Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Open Biol ; 11(9): 210077, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34493070

RESUMO

Approximately 90% of cancer-related deaths can be attributed to a tumour's ability to spread. We have identified CG7379, the fly orthologue of human ING1, as a potent invasion suppressor. ING1 is a type II tumour suppressor with well-established roles in the transcriptional regulation of genes that control cell proliferation, response to DNA damage, oncogene-induced senescence and apoptosis. Recent work suggests a possible role for ING1 in cancer cell invasion and metastasis, but the molecular mechanism underlying this observation is lacking. Our results show that reduced expression of CG7379 promotes invasion in vivo in Drosophila, reduces the junctional localization of several adherens and septate junction components, and severely disrupts cell-cell junction architecture. Similarly, ING1 knockdown significantly enhances invasion in vitro and disrupts E-cadherin distribution at cell-cell junctions. A transcriptome analysis reveals that loss of ING1 affects the expression of several junctional and cytoskeletal modulators, confirming ING1 as an invasion suppressor and a key regulator of cell-cell junction integrity.


Assuntos
Neoplasias da Mama/prevenção & controle , Comunicação Celular , Proteínas de Drosophila/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína 1 Inibidora do Crescimento/metabolismo , Animais , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Humanos , Proteína 1 Inibidora do Crescimento/genética , Células MCF-7 , Invasividade Neoplásica , Transcriptoma
2.
Metabolites ; 11(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919944

RESUMO

The integration of untargeted metabolomics and transcriptomics from the same population of cells or tissue enhances the confidence in the identified metabolic pathways and understanding of the enzyme-metabolite relationship. Here, we optimised a simultaneous extraction method of metabolites/lipids and RNA from ependymoma cells (BXD-1425). Relative to established RNA (mirVana kit) or metabolite (sequential solvent addition and shaking) single extraction methods, four dual-extraction techniques were evaluated and compared (methanol:water:chloroform ratios): cryomill/mirVana (1:1:2); cryomill-wash/Econospin (5:1:2); rotation/phenol-chloroform (9:10:1); Sequential/mirVana (1:1:3). All methods extracted the same metabolites, yet rotation/phenol-chloroform did not extract lipids. Cryomill/mirVana and sequential/mirVana recovered the highest amounts of RNA, at 70 and 68% of that recovered with mirVana kit alone. sequential/mirVana, involving RNA extraction from the interphase of our established sequential solvent addition and shaking metabolomics-lipidomics extraction method, was the most efficient approach overall. Sequential/mirVana was applied to study a) the biological effect caused by acute serum starvation in BXD-1425 cells and b) primary ependymoma tumour tissue. We found (a) 64 differentially abundant metabolites and 28 differentially expressed metabolic genes, discovering four gene-metabolite interactions, and (b) all metabolites and 62% lipids were above the limit of detection, and RNA yield was sufficient for transcriptomics, in just 10 mg of tissue.

3.
Plant Physiol ; 171(2): 1277-90, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208298

RESUMO

ALTERED MERISTEM PROGRAM1 (AMP1) is a member of the M28 family of carboxypeptidases with a pivotal role in plant development and stress adaptation. Its most prominent mutant defect is a unique hypertrophic shoot phenotype combining a strongly increased organ formation rate with enhanced meristem size and the formation of ectopic meristem poles. However, so far the role of AMP1 in shoot development could not be assigned to a specific molecular pathway nor is its biochemical function resolved. In this work we evaluated the level of functional conservation between AMP1 and its human homolog HsGCPII, a tumor marker of medical interest. We show that HsGCPII cannot substitute AMP1 in planta and that an HsGCPII-specific inhibitor does not evoke amp1-specific phenotypes. We used a chemical genetic approach to identify the drug hyperphyllin (HP), which specifically mimics the shoot defects of amp1, including plastochron reduction and enlargement and multiplication of the shoot meristem. We assessed the structural requirements of HP activity and excluded that it is a cytokinin analog. HP-treated wild-type plants showed amp1-related tissue-specific changes of various marker genes and a significant transcriptomic overlap with the mutant. HP was ineffective in amp1 and elevated the protein levels of PHAVOLUTA, consistent with the postulated role of AMP1 in miRNA-controlled translation, further supporting an AMP1-related mode of action. Our work suggests that plant and animal members of the M28 family of proteases adopted unrelated functions. With HP we provide a tool to characterize the plant-specific functions of this important class of proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Benzamidas/farmacologia , Carboxipeptidases/deficiência , Carboxipeptidases/metabolismo , Meristema/fisiologia , Folhas de Planta/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/ultraestrutura , Benzamidas/química , Biomarcadores/metabolismo , Sequência Conservada , Citocininas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Humanos , Meristema/efeitos dos fármacos , MicroRNAs/metabolismo , Mutação/genética , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/ultraestrutura , Homologia de Sequência de Aminoácidos , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Transcriptoma/genética
4.
BMC Plant Biol ; 15: 215, 2015 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26341899

RESUMO

BACKGROUND: Plant cell walls are dynamic structures involved in all aspects of plant growth, environmental interactions and defense responses, and are the most abundant renewable source of carbon-containing polymers on the planet. To balance rigidity and extensibility, the composition and integrity of cell wall components need to be tightly regulated, for example during cell elongation. RESULTS: We show that mutations in the MED25/PFT1 and MED8 subunits of the Mediator transcription complex suppressed the sugar-hypersensitive hypocotyl elongation phenotype of the hsr8-1 mutant, which has cell wall defects due to arabinose deficiency that do not permit normal cell elongation. This suppression occurred independently of light and jasmonic acid (JA) signaling. Gene expression analyses revealed that the expression of genes induced in hsr8-1 that encode enzymes and proteins that are involved in cell expansion and cell wall strengthening is reduced in the pft1-2 mutant line, and the expression of genes encoding transcription factors involved in reducing hypocotyl cell elongation, genes encoding cell wall associated enzymes and proteins is up-regulated in pft1-2. PFT1 was also required for the expression of several glucose-induced genes, including those encoding cell wall components and enzymes, regulatory and enzymatic components of anthocyanin biosynthesis, and flavonoid and glucosinolate biosynthetic pathways. CONCLUSIONS: These results establish that MED25 and MED8 subunits of the Mediator transcriptional complex are required for the transcriptional regulation of genes involved in cell elongation and cell wall composition in response to defective cell walls and in sugar- responsive gene expression.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabinose/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Complexo Mediador/genética , Proteínas Nucleares/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/enzimologia , Parede Celular/metabolismo , Proteínas de Ligação a DNA , Hipocótilo/genética , Complexo Mediador/metabolismo , Proteínas Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA