Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Am J Gastroenterol ; 114(9): 1539-1549, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31306149

RESUMO

OBJECTIVES: Pancreatic cystic lesions (PCLs) may be precancerous. Those likely to harbor high-grade dysplasia (HGD) or pancreatic cancer (PC) are targets for surgical resection. Current algorithms to predict advanced neoplasia (HGD/PC) in PCLs lack diagnostic accuracy. In pancreatic tissue and cyst fluid (CF) from PCLs, we sought to identify and validate novel methylated DNA markers (MDMs) that discriminate HGD/PC from low-grade dysplasia (LGD) or no dysplasia (ND). METHODS: From an unbiased whole-methylome discovery approach using predefined selection criteria followed by multistep validation on case (HGD or PC) and control (ND or LGD) tissues, we identified discriminant MDMs. Top candidate MDMs were then assayed by quantitative methylation-specific polymerase chain reaction on archival CF from surgically resected PCLs. RESULTS: Of 25 discriminant MDMs identified in tissue, 13 were selected for validation in 134 CF samples (21 cases [8 HGD, 13 PC], 113 controls [45 ND, 68 LGD]). A tree-based algorithm using 2 CF-MDMs (TBX15, BMP3) achieved sensitivity and specificity above 90%. Discrimination was significantly better by this CF-MDM panel than by mutant KRAS or carcinoembryonic antigen, with areas under the receiver operating characteristic curve of 0.93 (95% confidence interval: 0.86-0.99), 0.71 (0.57-0.85), and 0.72 (0.60-0.84), respectively. Cutoffs for the MDM panel applied to an independent CF validation set (31 cases, 56 controls) yielded similarly high discrimination, areas under the receiver operating characteristic curve = 0.86 (95% confidence interval: 0.77-0.94, P = 0.2). DISCUSSION: Novel MDMs discovered and validated in tissue accurately identify PCLs harboring HGD/PC. A panel of 2 MDMs assayed in CF yielded results with potential to enhance current risk prediction algorithms. Prospective studies are indicated to optimize and further evaluate CF-MDMs for clinical use.


Assuntos
Carcinoma Ductal Pancreático/genética , Cistadenoma Seroso/genética , Metilação de DNA/genética , Cisto Pancreático/genética , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Pancreáticas/genética , Lesões Pré-Cancerosas/genética , Idoso , Proteína Morfogenética Óssea 3/genética , Antígeno Carcinoembrionário/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patologia , Líquido Cístico/metabolismo , Cistadenoma Seroso/diagnóstico , Cistadenoma Seroso/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Cisto Pancreático/diagnóstico , Cisto Pancreático/patologia , Neoplasias Intraductais Pancreáticas/diagnóstico , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Reação em Cadeia da Polimerase , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Proteínas com Domínio T/genética
2.
Oncogene ; 38(18): 3340-3354, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30643195

RESUMO

Basal subtype cancers are deadly malignancies but the molecular events driving tumor lethality are not completely understood. Ataxia-telangiectasia group D complementing gene (ATDC, also known as TRIM29), is highly expressed and drives tumor formation and invasion in human bladder cancers but the factor(s) regulating its expression in bladder cancer are unknown. Molecular subtyping of bladder cancer has identified an aggressive basal subtype, which shares molecular features of basal/squamous tumors arising in other organs and is defined by activation of a TP63-driven gene program. Here, we demonstrate that ATDC is linked with expression of TP63 and highly expressed in basal bladder cancers. We find that TP63 binds to transcriptional regulatory regions of ATDC and KRT14 directly, increasing their expression, and that ATDC and KRT14 execute a TP63-driven invasive program. In vivo, ATDC is required for TP63-induced bladder tumor invasion and metastasis. These results link TP63 and the basal gene expression program to ATDC and to aggressive tumor behavior. Defining ATDC as a molecular determinant of aggressive, basal cancers may lead to improved biomarkers and therapeutic approaches.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Invasividade Neoplásica/patologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Neoplasia de Células Basais/metabolismo , Neoplasia de Células Basais/patologia , Neoplasias de Células Escamosas/metabolismo , Neoplasias de Células Escamosas/patologia , Transcrição Gênica/fisiologia
3.
Small ; 14(42): e1703617, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30239130

RESUMO

Cancer heterogeneity is a notorious hallmark of this disease, and it is desirable to tailor effective treatments for each individual patient. Drug combinations have been widely accepted in cancer treatment for better therapeutic efficacy as compared to a single compound. However, experimental complexity and cost grow exponentially with more target compounds under investigation. The primary challenge remains to efficiently perform a large-scale drug combination screening using a small number of patient primary samples for testing. Here, a scalable, easy-to-use, high-throughput drug combination screening scheme is reported, which has the potential of screening all possible pairwise drug combinations for arbitrary number of drugs with multiple logarithmic mixing ratios. A "Christmas tree mixer" structure is introduced to generate a logarithmic concentration mixing ratio between drug pairs, providing a large drug concentration range for screening. A three-layer structure design and special inlets arrangement facilitate simple drug loading process. As a proof of concept, an 8-drug combination chip is implemented, which is capable of screening 172 different treatment conditions over 1032 3D cancer spheroids on a single chip. Using both cancer cell lines and patient-derived cancer cells, effective drug combination screening is demonstrated for precision medicine.


Assuntos
Medicina de Precisão/métodos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Microfluídica/métodos , Esferoides Celulares
4.
Elife ; 72018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30074477

RESUMO

The biological properties of pancreatic cancer stem cells (PCSCs) remain incompletely defined and the central regulators are unknown. By bioinformatic analysis of a human PCSC-enriched gene signature, we identified the transcription factor HNF1A as a putative central regulator of PCSC function. Levels of HNF1A and its target genes were found to be elevated in PCSCs and tumorspheres, and depletion of HNF1A resulted in growth inhibition, apoptosis, impaired tumorsphere formation, decreased PCSC marker expression, and downregulation of POU5F1/OCT4 expression. Conversely, HNF1A overexpression increased PCSC marker expression and tumorsphere formation in pancreatic cancer cells and drove pancreatic ductal adenocarcinoma (PDA) cell growth. Importantly, depletion of HNF1A in xenografts impaired tumor growth and depleted PCSC marker-positive cells in vivo. Finally, we established an HNF1A-dependent gene signature in PDA cells that significantly correlated with reduced survivability in patients. These findings identify HNF1A as a central transcriptional regulator of PCSC properties and novel oncogene in PDA.


Assuntos
Adenocarcinoma/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/genética , Adenocarcinoma/patologia , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Oncogenes/genética , Neoplasias Pancreáticas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Discov ; 6(8): 886-99, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27184426

RESUMO

UNLABELLED: Pancreatic ductal adenocarcinoma (PDA) is characterized by a dense stroma consisting of a prevalence of activated fibroblasts whose functional contributions to pancreatic tumorigenesis remain incompletely understood. In this study, we provide the first identification and characterization of mesenchymal stem cells (MSC) within the human PDA microenvironment, highlighting the heterogeneity of the fibroblast population. Primary patient PDA samples and low-passage human pancreatic cancer-associated fibroblast cultures were found to contain a unique population of cancer-associated MSCs (CA-MSC). CA-MSCs markedly enhanced the growth, invasion, and metastatic potential of PDA cancer cells. CA-MSCs secreted the cytokine GM-CSF that was required for tumor cell proliferation, invasion, and transendothelial migration. Depletion of GM-CSF in CA-MSCs inhibited the ability of these cells to promote tumor cell growth and metastasis. Together, these data identify a population of MSCs within the tumor microenvironment that possesses a unique ability, through GM-CSF signaling, to promote PDA survival and metastasis. SIGNIFICANCE: The role of stroma in pancreatic cancer is controversial. Here, we provide the first characterization of MSCs within the human PDA microenvironment and demonstrate that CA-MSCs promote tumorigenesis through the production of GM-CSF. These data identify a novel cytokine pathway that mediates mesenchymal-epithelial cross-talk and is amenable to therapeutic intervention. Cancer Discov; 6(8); 886-99. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 803.


Assuntos
Comunicação Celular , Células Epiteliais/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Animais , Biomarcadores , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Xenoenxertos , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/citologia , Camundongos , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Células Estromais/metabolismo , Migração Transendotelial e Transepitelial/genética
6.
Transgenic Res ; 22(2): 403-10, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22851140

RESUMO

Hematopoietic stem cells (HSC) are found in several independent sites embryonically. Loss-of-function studies indicated that Notch1, but not Notch2 signaling was required for HSC emergence from the aortic-gonado-mesonephros (AGM) region. We previously showed that constitutive Notch1 activation impaired primitive erythroid differentiation, but its effects on HSC emergence from the AGM region were not studied. To further define specific roles of Notch receptors, we characterized HSC in mouse embryos expressing either Notch1 intracellular domain (ICD) or Notch4ICD in VE-cadherin or SM22α expressing populations. Although embryonic Notch1 activation in VE-cadherin populations led to lethality after E13.5, earlier defects in the fetal liver were observed. Embryos were analyzed at E12.5 to assess hematopoiesis and the phenotype of developing cells in the AGM region. We found that activation of Notch1 in the endothelial compartment in VE-cadherin expressing cells resulted in the absence of intra-aortic clusters and defects in fetal liver hematopoiesis. In contrast, although Notch4 expression is regulated during fetal hematopoiesis, activation of Notch4 in VE-cadherin expressing populations did not affect HSC phenotype, although later vascular remodeling was impaired. Likewise, activation of Notch1 in SM22α positive populations had no significant effect on hematopoiesis. Our results indicate a cell type-dependent activity and distinct features of Notch1 versus Notch4 signaling and their impact on HSC generation.


Assuntos
Antígenos CD/genética , Caderinas/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Receptor Notch1/genética , Animais , Aorta/citologia , Aorta/embriologia , Aorta/metabolismo , Diferenciação Celular/genética , Células Endoteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Fígado/citologia , Fígado/embriologia , Fígado/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas/genética , Receptor Notch4 , Receptores Notch/genética , Receptores Notch/metabolismo , Ativação Transcricional
7.
J Mol Cell Cardiol ; 53(6): 790-800, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22999861

RESUMO

White mature adipocytes give rise to multipotent cells, so-called de-differentiated fat (DFAT) cells, when losing their fat in culture. The objective of this study was to examine the ability of DFAT cells to give rise to endothelial cells (ECs) in vitro and vivo. We demonstrate that mouse and human DFAT cells, derived from adipose tissue and lipospirate, respectively, initially lack expression of CD34, CD31, CD146, CD45 and pericyte markers, distinguishing them from progenitor cells previously identified in adipose stroma. The DFAT cells spontaneously differentiate into vascular ECs in vitro, as determined by real-time PCR, fluorescence activated cell sorting, immunostaining, and formation of tube structures. Treatment with bone morphogenetic protein (BMP)4 and BMP9, important in regulating angiogenesis, significantly enhances the EC differentiation. Furthermore, adipocyte-derived cells from Green Fluorescent Protein-transgenic mice were detected in the vasculature of infarcted myocardium up to 6 weeks after ligation of the left anterior descending artery in mice. We conclude that adipocyte-derived multipotent cells are able to spontaneously give rise to ECs, a process that is promoted by BMPs and may be important in cardiovascular regeneration and in physiological and pathological changes in fat and other tissues.


Assuntos
Adipócitos Brancos/citologia , Desdiferenciação Celular/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Multipotentes/citologia , Adipócitos Brancos/efeitos dos fármacos , Animais , Proteína Morfogenética Óssea 4/farmacologia , Desdiferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Expressão Gênica , Fatores de Diferenciação de Crescimento/farmacologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Multipotentes/efeitos dos fármacos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Transplante de Células-Tronco
8.
Adipocyte ; 1(1): 46-57, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23700510

RESUMO

Adipose tissue development is dependent on multiple signaling mechanisms and cell-cell interactions that regulate adipogenesis, angiogenesis and extracellular remodeling. The Notch signaling pathway is an important cell-fate determinant whose role in adipogenesis is not clearly defined. To address this issue, we examined the effect of inhibition of Notch signaling by soluble-Jagged1 in the 3T3-L1 preadipocyte line. In vitro, soluble-Jagged1 expression in 3T3-L1 cells altered cell morphology, increased the rate of cell proliferation and induced an early transcriptional response to differentiation stimuli. However, these cells did not form mature adipocytes due to their inability to exit the cell-cycle in response to serum-starvation and glucocorticoid-induced cell-cycle arrest. In contrast, subcutaneous allografts of soluble-Jagged1 cells formed larger fat pads containing lipid-filled adipocytes with improved neovascularization compared with controls. Since adipogenesis is tightly associated with angiogenesis, we evaluated the influence of soluble-Jagged1 on endothelial cells by culturing them in cell-free conditioned media from preadipocytes. Soluble Jagged1-mediated inhibition of Notch signaling increased levels of secreted cytokines, potentially contributing to the improved cell growth and proliferation observed in these cultures. Our findings demonstrate an initial requirement of Notch signaling inactivation for preadipocyte cell commitment and support the hypothesis that cell-to-cell crosstalk between the preadipocytes and endothelial cells is required for neovascularization and remodeling of the tissue to promote hyperplasia and hypertrophy of differentiating adipocytes.

9.
Br J Nutr ; 108(6): 1025-33, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22142492

RESUMO

We recently characterised Sprouty1 (Spry1), a growth factor signalling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue-specific Spry1 expression in mice resulted in increased bone mass and reduced body fat, while conditional knockout of Spry1 had the opposite effect with decreased bone mass and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high-fat diet-induced obesity, bone loss and associated lipid abnormalities, and demonstrate that Spry1 has a long-term protective effect on mice fed a high-energy diet. We studied diet-induced obesity in mice with fatty acid binding promoter-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole-body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1-null mice, a high-fat diet increased body fat by 40 %, impaired glucose regulation and led to liver steatosis. However, overexpression of Spry1 led to 35 % (P < 0·05) lower body fat, reduced bone loss and normal metabolic function compared with single transgenics. This protective phenotype was associated with decreased circulating insulin (70 %) and leptin (54 %; P < 0·005) compared with controls on a high-fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45 %. We show that conditional Spry1 expression in adipose tissue protects against high-fat diet-induced obesity and associated bone loss.


Assuntos
Tecido Adiposo/metabolismo , Reabsorção Óssea/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/prevenção & controle , Intolerância à Glucose/prevenção & controle , Proteínas de Membrana/metabolismo , Obesidade/prevenção & controle , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Adiposidade , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/imunologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Cruzamentos Genéticos , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Integrases/genética , Integrases/metabolismo , Metabolismo dos Lipídeos , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Especificidade de Órgãos , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo
10.
J Biol Chem ; 286(32): 28312-21, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21685392

RESUMO

Activation of Notch signaling by Jagged-1 (Jag-1) in vascular smooth muscle cells (VSMC) promotes a differentiated phenotype characterized by increased expression of contractile proteins. Recent studies show that microRNAs (miR)-143/145 regulates VSMC phenotype. The serum response factor (SRF)/myocardin complex binds to CArG sequences to activate miR-143/145 transcription, but no other regulators are known in VSMC. Using miR arrays, we found miR-143/145 induced following expression of a constitutively active Notch1 intracellular domain (N1ICD). We hypothesized that miR-143/145 is required for Jag-1/Notch-induced VSMC differentiation. Activation of Notch receptors by Jag-1 caused CBF1-dependent up-regulation of miR-143/145, increased differentiation, and decreased proliferation. Conversely, inhibiting basal Notch signaling decreased steady state levels of miR-143/145. Using SRF knockdown, we found that Jag-1/Notch induction of miR-143/145 is SRF independent, although full acquisition of contractile markers requires SRF. Using miR-143/145 promoter reporter constructs we show Jag-1/Notch increases promoter activity, and this is dependent on intact CBF1 consensus sites within the promoter. Chromatin immunoprecipitation (ChIP) assays revealed that N1ICD-containing complexes bind to CBF1 sites in the miR-143/145 promoter. We also identified N1ICD complex binding to CBF1 sites within the endogenous human miR-143/145 promoter. Using miR-143/145-interfering oligonucleotides, we demonstrate that Jag-1/Notch signaling requires induction of both miR-143 and miR-145 to promote the VSMC contractile phenotype. Thus, miR-143/145 is a novel transcriptional target of Jag-1/Notch signaling in VSMC. We propose miR-143/145 as activated independently by Jag-1/Notch and SRF in parallel pathways. Multiple pathways converging on miR-143/145 provides potential for fine-tuning or amplification of VSMC differentiation signals.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/biossíntese , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Proteínas de Membrana/genética , MicroRNAs/genética , Família Multigênica/fisiologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Receptores Notch/genética , Elementos de Resposta/fisiologia , Proteínas Serrate-Jagged , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 31(4): 876-82, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21273559

RESUMO

OBJECTIVE: Notch signaling has a critical role in vascular development and morphogenesis. Activation of Notch in endothelial cells led to a senescence-like phenotype with loss of barrier function. Our objective was to understand the molecular pathways mediating this phenotype. METHODS AND RESULTS: Human primary endothelial cells increase expression of Notch receptors and ligands during propagation in vitro toward natural senescence. This senescence was induced at low passage with Notch activation. We characterized the pathways activated downstream of Notch signaling. Notch was activated by Delta-like 4 ligand or constitutively active Notch receptors and measured for cell proliferation, migration, and sprouting. Notch signaling triggered early senescence in low-passage cells, characterized by increased p53 and p21 expression. The senescence phenotype was associated with hyperpermeability of the monolayer, with disrupted vascular endothelial cadherin and ß-catenin levels and localization. Consistent with changes in cell shape and contact, we demonstrated that Notch activation increases myosin light chain phosphorylation by activating Rho kinase. Inhibition of Rho abrogated Notch-induced myosin light chain phosphorylation and led to enhanced barrier function by reorganizing F-actin to ß-catenin-containing cell-cell adherens junctions. CONCLUSIONS: Our findings show that RhoA/Rho kinase regulation by Notch signaling in endothelial cells triggers a senescence phenotype associated with endothelial barrier dysfunction.


Assuntos
Proliferação de Células , Senescência Celular , Células Endoteliais/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Junções Aderentes/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Proteínas de Ligação ao Cálcio , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Endoteliais/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Cadeias Leves de Miosina/metabolismo , Neovascularização Fisiológica , Permeabilidade , Fenótipo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Receptor Notch1/metabolismo , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção , Proteína Supressora de Tumor p53/metabolismo , beta Catenina/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
12.
FASEB J ; 24(9): 3264-73, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20410440

RESUMO

Development of bone and adipose tissue are linked processes arising from a common progenitor cell, but having an inverse relationship in disease conditions such as osteoporosis. Cellular differentiation of both tissues relies on growth factor cues, and we focus this study on Sprouty1 (Spry1), an inhibitor of growth factor signaling. We tested whether Spry1 can modify the development of fat cells through its activity in regulating growth factors known to be important for adipogenesis. We utilized conditional expression and genetic-null mouse models of Spry1 in adipocytes using the fatty acid binding promoter (aP2). Conditional deletion of Spry1 results in 10% increased body fat and decreased bone mass. This phenotype was rescued on Spry1 expression, which results in decreased body fat and increased bone mass. Ex vivo bone marrow experiments indicate Spry1 in bone marrow and adipose progenitor cells favors differentiation of osteoblasts at the expense of adipocytes by suppressing CEBP-beta and PPARgamma while up regulating TAZ. Age and gender-matched littermates expressing only Cre recombinase were used as controls. Spry1 is a critical regulator of adipocyte differentiation and mesenchymal stem cell (MSC) lineage allocation, potentially acting through regulation of CEBP-beta and TAZ.


Assuntos
Diferenciação Celular , Proteínas de Membrana/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fosfoproteínas/fisiologia , Absorciometria de Fóton , Proteínas Adaptadoras de Transdução de Sinal , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/genética , Adipogenia/fisiologia , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Células Cultivadas , Hipertrofia/genética , Hipertrofia/fisiopatologia , Immunoblotting , Imuno-Histoquímica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Microtomografia por Raio-X
13.
J Biol Chem ; 285(23): 17556-63, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20368328

RESUMO

Notch and transforming growth factor-beta (TGFbeta) play pivotal roles during vascular development and the pathogenesis of vascular disease. The interaction of these two pathways is not fully understood. The present study utilized primary human smooth muscle cells (SMC) to examine molecular cross-talk between TGFbeta1 and Notch signaling on contractile gene expression. Activation of Notch signaling using Notch intracellular domain or Jagged1 ligand induced smooth muscle alpha-actin (SM actin), smooth muscle myosin heavy chain, and calponin1, and the expression of Notch downstream effectors hairy-related transcription factors. Similarly, TGFbeta1 treatment of human aortic smooth muscle cells induced SM actin, calponin1, and smooth muscle protein 22-alpha (SM22alpha) in a dose- and time-dependent manner. Hairy-related transcription factor proteins, which antagonize Notch activity, also suppressed the TGFbeta1-induced increase in SMC markers, suggesting a general mechanism of inhibition. We found that Notch and TGFbeta1 cooperatively activate SMC marker transcripts and protein through parallel signaling axes. Although the intracellular domain of Notch4 interacted with phosphoSmad2/3 in SMC, this interaction was not observed with Notch1 or Notch2. However, we found that CBF1 co-immunoprecipitated with phosphoSmad2/3, suggesting a mechanism to link canonical Notch signaling to phosphoSmad activity. Indeed, the combination of Notch activation and TGFbeta1 treatment led to synergistic activation of a TGFbeta-responsive promoter. This increase corresponded to increased levels of phosphoSmad2/3 interaction at Smad consensus binding sites within the SM actin, calponin1, and SM22alpha promoters. Thus, Notch and TGFbeta coordinately induce a molecular and functional contractile phenotype by co-regulation of Smad activity at SMC promoters.


Assuntos
Receptor Notch1/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Aorta/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Ligantes , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Contração Muscular , Miócitos de Músculo Liso/metabolismo , Fenótipo , Proteínas Serrate-Jagged , Calponinas
14.
Am J Pathol ; 173(3): 865-78, 2008 09.
Artigo em Inglês | MEDLINE | ID: mdl-18688026

RESUMO

We previously found that soluble forms of the Notch ligands Jagged1 and Delta1 induced fibroblast growth factor receptor-dependent cell transformation in NIH3T3 fibroblasts. However, the phenotypes of these lines differed, indicating distinct functional differences among these Notch ligands. In the present study, we used allografts to test the hypothesis that NIH3T3 fibroblasts that express soluble forms of Delta1 and Jagged1 accelerate tumorigenicity in vivo. With the exception of the full-length Jagged1 transfectant, all other cell lines, including the control, generated tumors when injected subcutaneously in athymic mice. Suppression of Notch signaling by the soluble ligands significantly increased tumor onset and growth, whereas full-length Jagged1 completely suppressed tumor development. In addition, there were striking differences in tumor pathology with respect to growth kinetics, vascularization, collagen content, size and number of necrotic foci, and invasiveness into the underlying tissue. Further, the production of angiogenic factors, including vascular endothelial growth factor, also differed among the tumor types. Lastly, both Jagged1- and Delta1-derived tumors contained phenotypically distinct populations of lipid-filled cells that corresponded with increased expression of adipocyte markers. The divergence of tumor phenotype may be attributed to ligand-specific alterations in Notch receptor responses in exogenous and endogenous cell populations within the allographs. Our findings demonstrate distinct functional properties for these Notch ligands in the promotion of tumorigenicity in vivo.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Transformação Celular Neoplásica/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Experimentais/metabolismo , Fenótipo , Animais , Western Blotting , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Fibroblastos/metabolismo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteína Jagged-1 , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neovascularização Patológica/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Serrate-Jagged , Transfecção
15.
Circ Res ; 102(6): 661-8, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18239137

RESUMO

Notch signaling regulates smooth muscle cell phenotype and is critical for vascular development. One Notch target is smooth muscle alpha-actin (SMA), a differentiated smooth muscle cell marker. The Notch intracellular domain (NotchICD) forms a complex with CBF-1 (C-promoter-binding factor-1) and directly induces SMA expression. Using primary human smooth muscle cells, we show that expression of the constitutive active ICD of human Notch1, Notch2, or Notch4 receptors increase SMA levels. NotchICD also induce expression of the transcriptional repressors HRT1 (Hairy-related transcription factor 1) and HRT2, in a CBF-1-dependent manner. However, unlike the activating effects of NotchICD, HRT1 or HRT2 represses basal SMA expression, and both are strong antagonists of NotchICD-induced SMA upregulation. This antagonism does not depend on histone deacetylase activity and occurs at the transcriptional level. Competitive coimmunoprecipitation experiments demonstrate that HRT does not disrupt the association of NotchICD and CBF-1, which form a complex in the presence or absence of HRTs. However, HRT suppresses NotchICD/CBF-1 binding to the SMA promoter, as measured by chromatin immunoprecipitation, and transactivation of an SMA promoter reporter spanning sequences -124/+32. SMA expression was regulated similarly following endogenous Notch activation in smooth muscle cells by coculture with endothelial cells, and this effect was also sensitive to HRT inhibition. Temporally defined HRT activity may constitute a negative feedback mechanism of Notch signaling. Our study presents a novel mechanism by which a balance between Notch signaling and HRT activity determines the expression of smooth muscle differentiation markers including SMA.


Assuntos
Actinas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Actinas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Receptor Notch4 , Receptores Notch/química , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transcrição Gênica , Transdução Genética , Regulação para Cima
16.
Am J Pathol ; 171(3): 1023-36, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17675579

RESUMO

Notch functions as an oncogene or tumor inhibitor in various cancers, and decreases in Notch2 expression are associated with increasing grade of human breast cancer. We constitutively activated Notch signaling with intracellular domain (ICD) expression in the human adenocarcinoma line MDA-MB-231. Notch2 signaling increased apoptosis, whereas Notch4ICD (int3) significantly increased cell proliferation and growth. Cells with activated Notch2 or Notch4 were injected into nu/nu mice for analysis of in vivo tumor xenograft phenotype. Tumor growth was significantly altered depending on the receptor activated. Notch2ICD potently suppressed tumor take and growth, leading to a 60% decrease in tumors and significantly smaller, necrotic tumors. Despite this, Notch2ICD tumors were highly vascularized, although the vessels were smaller and comprised a more immature network compared with Notch4ICD tumors. Notch4ICD tumors were highly aggressive and well vascularized, indicating a role for Notch4 signaling in the promotion of the malignant phenotype in addition to its transforming ability. Although both NotchICD groups expressed angiogenic factors, Notch4ICD had selective vascular endothelial growth factor-D in both tumor and host stroma, suggesting a differential regulation of cytokines that may impact vascular recruitment and autocrine tumor signaling. Our results demonstrate that Notch2 signaling is a potent inhibitory signal in human breast cancer xenografts.


Assuntos
Apoptose/fisiologia , Neoplasias da Mama , Transplante de Neoplasias , Receptor Notch2/metabolismo , Transdução de Sinais/fisiologia , Transplante Heterólogo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptor Notch2/genética , Receptor Notch4 , Receptores Notch/genética , Receptores Notch/metabolismo , Transplante Heterólogo/patologia , Transplante Heterólogo/fisiologia
17.
Transgenic Res ; 15(5): 647-53, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16952017

RESUMO

Mouse strains expressing the site-specific Cre recombinase facilitate conditional ablation or activation of genomic sequences when one or several exons of a gene of interest are flanked by loxP sites. Recently, several strains targeting Cre expression to adipocytes have been developed using promoter sequences from the aP2 (Fatty Acid Binding Protein 4, FABP4) gene for adipose tissue-specific gene expression studies. aP2/FABP4 is predominantly expressed in adipose tissue, and while this promoter provides adipocyte-restricted expression postnatally, its expression throughout embryonic development had not been previously characterized. In this report, we demonstrate that the aP2-Cre transgene is expressed and consistently localized within the embryo from mid-gestation stage 9.5 dpc. By 15.5 dpc, beta-gal activity was detected primarily in the brown adipose tissue, trigeminal ganglia, dorsal root ganglia, cartilage primordia and vertebrae. Immunofluorescence staining for Cre recombinase and FABP4 protein showed a corresponding staining pattern similar to that of beta-gal, confirming that Cre recombinase was produced in the transgenic line at late stages of development, and overlapped with endogenous aP2/FABP4 production. Further, fat-specific oil red O staining of tissue sections validated the presence of lipids in the stained tissues indicating that adipocytes and/or adipocyte-like cells were indeed present in these tissues. This is the first report to our knowledge to describe and confirm aP2/FABP4 promoter expression in this transgenic line during development in the mouse embryo and indicates that aP2/FABP4 expression occurs not only in mature adipocytes, but has a wider embryonic expression pattern than previously appreciated.


Assuntos
Proteínas de Ligação a Ácido Graxo/genética , Desenvolvimento Fetal/genética , Integrases/genética , Proteínas Recombinantes de Fusão/genética , Tecido Adiposo/metabolismo , Animais , Proteínas de Ligação a Ácido Graxo/biossíntese , Humanos , Integrases/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/biossíntese
18.
J Nutr ; 134(5): 1032-8, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15113941

RESUMO

Despite its potential importance in obesity and related disorders, little is known about regulation of lipogenesis in human adipose tissue. To investigate this area at the molecular and mechanistic levels, we studied lipogenesis and the regulation of 1 of its core enzymes, fatty acid synthase (FAS), in human adipose tissue in response to hormonal and nutritional manipulation. As a paradigm for lipogenic genes, we cloned the upstream region of the human FAS gene, compared its sequence to that of FAS orthologs from other species, and identified important regulatory elements that lie upstream of the FAS coding region. Lipogenesis, as assessed by glucose incorporation into lipids, was increased by insulin and more so by the combination of insulin and dexamethasone (Dex, a potent glucocorticoid analogue). In parallel, FAS expression, activity, and gene transcription rate were also significantly increased by these treatments. We also showed that linoleic acid, a representative PUFA, attenuated the actions of insulin and Dex on fatty acid and lipid synthesis as well as FAS activity and expression. Using reporter assays, we determined that the regions responsible for hormonal regulation of the FAS gene lie in the proximal portion of the gene's 5'-flanking region, within which we identified an insulin response element similar to the E-box sequence we identified previously in the rat FAS gene. In summary, we demonstrated that lipogenesis occurs in human adipose tissue and can be induced by insulin, further enhanced by glucocorticoids, and suppressed by PUFA in a hormone-dependent manner.


Assuntos
Tecido Adiposo/metabolismo , Ácido Graxo Sintases/genética , Regulação da Expressão Gênica , Lipídeos/biossíntese , Tecido Adiposo/enzimologia , Adulto , Sequência de Bases , Técnicas de Cultura , Dexametasona/farmacologia , Ácidos Graxos/biossíntese , Feminino , Expressão Gênica , Glucocorticoides/farmacologia , Glucose/metabolismo , Humanos , Insulina/farmacologia , Pessoa de Meia-Idade , Dados de Sequência Molecular , Regiões Promotoras Genéticas/fisiologia
19.
J Nutr ; 134(4): 762-70, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15051823

RESUMO

Uncontrolled expansion of adipose tissue leads to obesity, a public health epidemic affecting >30% of adult Americans. Adipose mass increases in part through the recruitment and differentiation of an existing pool of preadipocytes (PA) into adipocytes (AD). Most studies investigating adipogenesis used primarily murine cell lines; much less is known about the relevant processes that occur in humans. Therefore, characterization of genes associated with adipocyte development is key to understanding the pathogenesis of obesity and developing treatments for this disorder. To address this issue, we performed large-scale analyses of human adipose gene expression using microarray technology. Differential gene expression between PA and AD was analyzed in 6 female patients using human cDNA microarray slides and data analyzed using the Stanford Microarray Database. Statistical analysis for the gene expression was performed using the SAS mixed models. Compared with PA, several genes involved in lipid metabolism were overexpressed in AD, including fatty acid binding protein, adipose differentiation-related protein, lipoprotein lipase, perilipin, and adipose most abundant transcript 1. Novel genes expressed in adipocytes included E2F5 transcriptional factor and SMARC (SWI/SNF-related, matrix associated, actin-dependent regulator of chromatin). PA predominantly expressed genes encoding extracellular matrix components such as fibronectin, matrix metalloprotein, and novel proteins such as lysyl oxidase. Despite the high differential expression of some of these genes, many did not differ significantly likely due to high variability and limited statistical power. A comprehensive list of differential gene expression is presented according to cellular function. In conclusion, these studies offer an overview of the gene expression profiles in PA and AD and identify new genes with potentially important functions in adipose tissue development and obesity that merit further investigation.


Assuntos
Adipócitos/química , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco/química , Proteínas Supressoras de Tumor , Proteínas de Transporte/genética , Diferenciação Celular , Células Cultivadas , Ácido Graxo Sintases/genética , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo , Ácidos Graxos/metabolismo , Feminino , Glicerolfosfato Desidrogenase/genética , Humanos , Lipase Lipoproteica/genética , Pessoa de Meia-Idade , Receptores Citoplasmáticos e Nucleares/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA