Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 9(1)2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936765

RESUMO

The IL22RA2 locus is associated with risk for multiple sclerosis (MS) but causative variants are yet to be determined. In a single nucleotide polymorphism (SNP) screen of this locus in a Basque population, rs28385692, a rare coding variant substituting Leu for Pro at position 16 emerged significantly (p = 0.02). This variant is located in the signal peptide (SP) shared by the three secreted protein isoforms produced by IL22RA2 (IL-22 binding protein-1(IL-22BPi1), IL-22BPi2 and IL-22BPi3). Genotyping was extended to a Europe-wide case-control dataset and yielded high significance in the full dataset (p = 3.17 × 10-4). Importantly, logistic regression analyses conditioning on the main known MS-associated SNP at this locus, rs17066096, revealed that this association was independent from the primary association signal in the full case-control dataset. In silico analysis predicted both disruption of the alpha helix of the H-region of the SP and decreased hydrophobicity of this region, ultimately affecting the SP cleavage site. We tested the effect of the p.Leu16Pro variant on the secretion of IL-22BPi1, IL-22BPi2 and IL-22BPi3 and observed that the Pro16 risk allele significantly lowers secretion levels of each of the isoforms to around 50%-60% in comparison to the Leu16 reference allele. Thus, our study suggests that genetically coded decreased levels of IL-22BP isoforms are associated with augmented risk for MS.


Assuntos
Predisposição Genética para Doença , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único/genética , Sinais Direcionadores de Proteínas/genética , Receptores de Interleucina/genética , Adulto , Sequência de Aminoácidos , Simulação por Computador , Bases de Dados Genéticas , Frequência do Gene/genética , Células HEK293 , Humanos , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Interleucina/química , Fatores de Risco
2.
Science ; 366(6466): 734-738, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31699935

RESUMO

Adult stem cells are essential for tissue homeostasis. In skeletal muscle, muscle stem cells (MuSCs) reside in a quiescent state, but little is known about the mechanisms that control homeostatic turnover. Here we show that, in mice, the variation in MuSC activation rate among different muscles (for example, limb versus diaphragm muscles) is determined by the levels of the transcription factor Pax3. We further show that Pax3 levels are controlled by alternative polyadenylation of its transcript, which is regulated by the small nucleolar RNA U1. Isoforms of the Pax3 messenger RNA that differ in their 3' untranslated regions are differentially susceptible to regulation by microRNA miR206, which results in varying levels of the Pax3 protein in vivo. These findings highlight a previously unrecognized mechanism of the homeostatic regulation of stem cell fate by multiple RNA species.


Assuntos
Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/metabolismo , Fator de Transcrição PAX3/genética , Poliadenilação , Regiões 3' não Traduzidas , Animais , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Mutantes , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo
3.
Int J Mol Sci ; 20(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108847

RESUMO

Of the three interleukin-22 binding protein (IL-22BP) isoforms produced by the human IL22RA2 gene, IL-22BPi2 and IL-22BPi3 are capable of neutralizing IL-22. The longest isoform, IL-22BPi1, does not bind IL-22, is poorly secreted, and its retention within the endoplasmic reticulum (ER) is associated with induction of an unfolded protein response (UPR). Therapeutic modulation of IL-22BPi2 and IL-22BPi3 production may be beneficial in IL-22-dependent disorders. Recently, we identified the ER chaperones GRP94 and cyclophilin B in the interactomes of both IL-22BPi1 and IL-22BPi2. In this study, we investigated whether secretion of the IL-22BP isoforms could be modulated by pharmacological targeting of GRP94 and cyclophilin B, either by means of geldanamycin, that binds to the ADP/ATP pocket shared by HSP90 paralogs, or by cyclosporin A, which causes depletion of ER cyclophilin B levels through secretion. We found that geldanamycin and its analogs did not influence secretion of IL-22BPi2 or IL-22BPi3, but significantly enhanced intracellular and secreted levels of IL-22BPi1. The secreted protein was heterogeneously glycosylated, with both high-mannose and complex-type glycoforms present. In addition, cyclosporine A augmented the secretion of IL-22BPi1 and reduced that of IL-22BPi2 and IL-22BPi3. Our data indicate that the ATPase activity of GRP94 and cyclophilin B are instrumental in ER sequestration and degradation of IL-22BPi1, and that blocking these factors mobilizes IL-22BPi1 toward the secretory route.


Assuntos
Benzoquinonas/farmacologia , Ciclofilinas/metabolismo , Ciclosporina/farmacologia , Lactamas Macrocíclicas/farmacologia , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Ciclofilinas/química , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Glicosilação , Células HEK293 , Humanos , Glicoproteínas de Membrana/química , Monócitos/metabolismo , Ligação Proteica/efeitos dos fármacos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteólise , Receptores de Interleucina/química , Receptores de Interleucina/genética
4.
Front Immunol ; 9: 2934, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619294

RESUMO

The human IL22RA2 gene co-produces three protein isoforms in dendritic cells [IL-22 binding protein isoform-1 (IL-22BPi1), IL-22BPi2, and IL-22BPi3]. Two of these, IL-22BPi2 and IL-22BPi3, are capable of neutralizing the biological activity of IL-22. The function of IL-22BPi1, which differs from IL-22BPi2 through an in-frame 32-amino acid insertion provided by an alternatively spliced exon, remains unknown. Using transfected human cell lines, we demonstrate that IL-22BPi1 is secreted detectably, but at much lower levels than IL-22BPi2, and unlike IL-22BPi2 and IL-22BPi3, is largely retained in the endoplasmic reticulum (ER). As opposed to IL-22BPi2 and IL-22BPi3, IL-22BPi1 is incapable of neutralizing or binding to IL-22 measured in bioassay or assembly-induced IL-22 co-folding assay. We performed interactome analysis to disclose the mechanism underlying the poor secretion of IL-22BPi1 and identified GRP78, GRP94, GRP170, and calnexin as main interactors. Structure-function analysis revealed that, like IL-22BPi2, IL-22BPi1 binds to the substrate-binding domain of GRP78 as well as to the middle domain of GRP94. Ectopic expression of wild-type GRP78 enhanced, and ATPase-defective GRP94 mutant decreased, secretion of both IL-22BPi1 and IL-22BPi2, while neither of both affected IL-22BPi3 secretion. Thus, IL-22BPi1 and IL-22BPi2 are bona fide clients of the ER chaperones GRP78 and GRP94. However, only IL-22BPi1 activates an unfolded protein response (UPR) resulting in increased protein levels of GRP78 and GRP94. Cloning of the IL22RA2 alternatively spliced exon into an unrelated cytokine, IL-2, bestowed similar characteristics on the resulting protein. We also found that CD14++/CD16+ intermediate monocytes produced a higher level of IL22RA2 mRNA than classical and non-classical monocytes, but this difference disappeared in immature dendritic cells (moDC) derived thereof. Upon silencing of IL22RA2 expression in moDC, GRP78 levels were significantly reduced, suggesting that native IL22RA2 expression naturally contributes to upregulating GRP78 levels in these cells. The IL22RA2 alternatively spliced exon was reported to be recruited through a single mutation in the proto-splice site of a Long Terminal Repeat retrotransposon sequence in the ape lineage. Our work suggests that positive selection of IL-22BPi1 was not driven by IL-22 antagonism as in the case of IL-22BPi2 and IL-22BPi3, but by capacity for induction of an UPR response.


Assuntos
Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Receptores de Interleucina/metabolismo , Resposta a Proteínas não Dobradas , Células Cultivadas , Células Dendríticas/metabolismo , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Interleucinas/química , Interleucinas/genética , Interleucinas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Ligação Proteica , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Receptores de Interleucina/química , Receptores de Interleucina/genética , Transdução de Sinais/genética , Interleucina 22
5.
Int J Mol Sci ; 18(2)2017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28134843

RESUMO

Hypoxic-ischemic brain damage is an alarming health and economic problem in spite of the advances in neonatal care. It can cause mortality or detrimental neurological disorders such as cerebral palsy, motor impairment and cognitive deficits in neonates. When hypoxia-ischemia occurs, a multi-faceted cascade of events starts out, which can eventually cause cell death. Lower levels of oxygen due to reduced blood supply increase the production of reactive oxygen species, which leads to oxidative stress, a higher concentration of free cytosolic calcium and impaired mitochondrial function, triggering the activation of apoptotic pathways, DNA fragmentation and cell death. The high incidence of this type of lesion in newborns can be partly attributed to the fact that the developing brain is particularly vulnerable to oxidative stress. Since antioxidants can safely interact with free radicals and terminate that chain reaction before vital molecules are damaged, exogenous antioxidant therapy may have the potential to diminish cellular damage caused by hypoxia-ischemia. In this review, we focus on the neuroprotective effects of antioxidant treatments against perinatal hypoxic-ischemic brain injury, in the light of the most recent advances.


Assuntos
Antioxidantes/uso terapêutico , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Antioxidantes/farmacologia , Humanos , Hipóxia-Isquemia Encefálica/patologia , Recém-Nascido , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA