Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(8): e202203081, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36367092

RESUMO

Two lithium phospha-enolates [RP=C(Sii Pr3 )OLi]2 were prepared by reaction of triisopropyl silyl phosphaethynolate, i Pr3 SiPCO, with aryl lithium reagents LiR (R=Mes: 1,3,5-trimethyl phenyl; or Mes*: 1,3,5,-tri-tertbutyl phenyl). Monomer/dimer aggregation of the enolates can be modulated by addition of 12-crown-4. Substitution of lithium for a heavier alkali metal was achieved through initial formation of a silyl enol ether, followed by reaction with KOt Bu to form the corresponding potassium phospha-enolate [MesP=C(Sii Pr3 )OK]2 . On addition of water, the enolates are protonated to afford RP=C(Sii Pr3 )(OH). For the sterically less demanding system (R=Mes), this phospha-enol rapidly tautomerises to the corresponding acyl phosphine MesP(H)C(Sii Pr3 )(O), which on heating extrudes CO. In contrast, bulkier phospha-enol (R=Mes*) is stable to rearrangement at room temperature and thermally decomposes to RH and i Pr3 SiPCO.

2.
J Am Chem Soc ; 143(27): 10367-10373, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34190545

RESUMO

The cyanide ion plays a key role in a number of industrially relevant chemical processes, such as the extraction of gold and silver from low grade ores. Metal cyanide compounds were arguably some of the earliest coordination complexes studied and can be traced back to the serendipitous discovery of Prussian blue by Diesbach in 1706. By contrast, heavier cyanide analogues, such as the cyaphide ion, C≡P-, are virtually unexplored despite the enormous potential of such ions as ligands in coordination compounds and extended solids. This is ultimately due to the lack of a suitable synthesis of cyaphide salts. Herein we report the synthesis and isolation of several magnesium-cyaphido complexes by reduction of iPr3SiOCP with a magnesium(I) reagent. By analogy with Grignard reagents, these compounds can be used for the incorporation of the cyaphide ion into the coordination sphere of metals using a simple salt-metathesis protocol.

3.
Org Process Res Dev ; 24(8): 1443-1456, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32905065

RESUMO

The perfect separation with optimal productivity, yield, and purity is very difficult to achieve. Despite its high selectivity, in crystallization unwanted impurities routinely contaminate a crystallization product. Awareness of the mechanism by which the impurity incorporates is key to understanding how to achieve crystals of higher purity. Here, we present a general workflow which can rapidly identify the mechanism of impurity incorporation responsible for poor impurity rejection during a crystallization. A series of four general experiments using standard laboratory instrumentation is required for successful discrimination between incorporation mechanisms. The workflow is demonstrated using four examples of active pharmaceutical ingredients contaminated with structurally related organic impurities. Application of this workflow allows a targeted problem-solving approach to the management of impurities during industrial crystallization development, while also decreasing resources expended on process development.

4.
Chem Commun (Camb) ; 54(4): 378-380, 2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29242890

RESUMO

Cp*Al reacts with diphenylacetylene to form a Cp*-substituted 1,4-dialuminacyclohexene. The dialuminacyclohexene reacts with four equivalents of an isonitrile to couple the terminal carbon atoms, forming 6 new carbon-carbon bonds and resulting in a zwitterionic diamide ligand which contains a carbocationic backbone.

5.
Dalton Trans ; 45(35): 13695-9, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27530604

RESUMO

Oxidative addition of inert bonds at low-valent main-group centres is becoming a major class of reactivity for these species. The reverse reaction, reductive elimination, is possible in some cases but far rarer. Here, we present a mechanistic study of reductive elimination from Al(iii) centres and unravel ligand effects in this process. Experimentally determined activation and thermodynamic parameters for the reductive elimination of Cp*H from Cp*2AlH are reported, and this reaction is found to be inhibited by the addition of Lewis bases. We find that C-H oxidative addition at Al(i) centres proceeds by initial protonation at the low-valent centre.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA