Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 8(20): 10727-10734, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35541538

RESUMO

A linear combination fitting in sulfur K-edge X-ray absorption near edge structure (S-XANES) measurements reveals each fraction of monosulfidic, disulfidic and polysulfidic linkages in solvent extracted sulfur cross-linked isoprene rubbers. The sulfidic linkage of a disulfidic type is found for the first time to be dominant when zinc stearate and N-(1,3-benzothiazol-2-ylsulfanyl)cyclohexanamine are used as the activator and accelerator, respectively, for the sulfur cross-linking reaction at 140 °C. The presence of the bridging bidentate zinc/stearate complex as an intermediate for the sulfur cross-linking reaction is supposed to induce the generation of abundant disulfidic linkages in the rubber networks. This unexpected observation is of use for the material design of high performance rubber products with anti-aging and thermal stabilities. S-XANES is a powerful tool that was used to reveal the characteristics of the sulfur cross-linking of rubber. These results will contribute to the development of rubber science and technology.

2.
J Appl Toxicol ; 35(11): 1348-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25809859

RESUMO

The direct peptide reactivity assay (DPRA) is a simple and versatile alternative method for the evaluation of skin sensitization that involves the reaction of test chemicals with two peptides. However, this method requires concentrated solutions of test chemicals, and hydrophobic substances may not dissolve at the concentrations required. Furthermore, hydrophobic test chemicals may precipitate when added to the reaction solution. We previously established a high-sensitivity method, the amino acid derivative reactivity assay (ADRA). This method uses novel cysteine (NAC) and novel lysine derivatives (NAL), which were synthesized by introducing a naphthalene ring to the amine group of cysteine and lysine residues. In this study, we modified the ADRA method by reducing the concentration of the test chemicals 100-fold. We investigated the accuracy of skin sensitization predictions made using the modified method, which was designated the ADRA-dilutional method (ADRA-DM). The predictive accuracy of the ADRA-DM for skin sensitization was 90% for 82 test chemicals which were also evaluated via the ADRA, and the predictive accuracy in the ADRA-DM was higher than that in the ADRA and DPRA. Furthermore, no precipitation of test compounds was observed at the initiation of the ADRA-DM reaction. These results show that the ADRA-DM allowed the use of test chemicals at concentrations two orders of magnitude lower than that possible with the ADRA. In addition, ADRA-DM does not have the restrictions on test compound solubility that were a major problem with the DPRA. Therefore, the ADRA-DM is a versatile and useful method.


Assuntos
Alternativas aos Testes com Animais/métodos , Naftalenos/toxicidade , Peptídeos/química , Pele/efeitos dos fármacos , Bioensaio , Cromatografia Líquida de Alta Pressão , Cisteína/química , Bases de Dados Factuais , Humanos , Concentração de Íons de Hidrogênio , Lisina/química , Reprodutibilidade dos Testes , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA