Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38941206

RESUMO

New web technologies have enabled the deployment of powerful GPU-based computational pipelines that run entirely in the web browser, opening a new frontier for accessible scientific visualization applications. However, these new capabilities do not address the memory constraints of lightweight end-user devices encountered when attempting to visualize the massive data sets produced by today's simulations and data acquisition systems. We propose a novel implicit isosurface rendering algorithm for interactive visualization of massive volumes within a small memory footprint. We achieve this by progressively traversing a wavefront of rays through the volume and decompressing blocks of the data on-demand to perform implicit ray-isosurface intersections, displaying intermediate results each pass. We improve the quality of these intermediate results using a pretrained deep neural network that reconstructs the output of early passes, allowing for interactivity with better approximates of the final image. To accelerate rendering and increase GPU utilization, we introduce speculative ray-block intersection into our algorithm, where additional blocks are traversed and intersected speculatively along rays to exploit additional parallelism in the workload. Our algorithm is able to trade-off image quality to greatly decrease rendering time for interactive rendering even on lightweight devices. Our entire pipeline is run in parallel on the GPU to leverage the parallel computing power that is available even on lightweight end-user devices. We compare our algorithm to the state of the art in low-overhead isosurface extraction and demonstrate that it achieves 1.7×- 5.7× reductions in memory overhead and up to 8.4× reductions in data decompressed.

2.
Open Res Eur ; 3: 69, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665265

RESUMO

Background: The transition to a climate neutral society such as that envisaged in the European Union Green Deal requires careful and comprehensive planning. Integrated assessment models (IAMs) and energy system optimisation models (ESOMs) are both commonly used for policy advice and in the process of policy design. In Europe, a vast landscape of these models has emerged and both kinds of models have been part of numerous model comparison and model linking exercises. However, IAMs and ESOMs have rarely been compared or linked with one another. Methods: This study conducts an explorative comparison and identifies possible flows of information between 11 of the integrated assessment and energy system models in the European Climate and Energy Modelling Forum. The study identifies and compares regional aggregations and commonly reported variables. We define harmonised regions and a subset of shared result variables that enable the comparison of scenario results across the models. Results: The results highlight how power generation and demand development are related and driven by regional and sectoral drivers. They also show that demand developments like for hydrogen can be linked with power generation potentials such as onshore wind power. Lastly, the results show that the role of nuclear power is related to the availability of wind resources. Conclusions: This comparison and analysis of modelling results across model type boundaries provides modellers and policymakers with a better understanding of how to interpret both IAM and ESOM results. It also highlights the need for community standards for region definitions and information about reported variables to facilitate future comparisons of this kind. The comparison shows that regional aggregations might conceal differences within regions that are potentially of interest for national policy makers thereby indicating a need for national-level analysis.

3.
Data Brief ; 42: 108021, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35341031

RESUMO

Energy system modeling can be used to develop internally-consistent quantified scenarios. These provide key insights needed to mobilise finance, understand market development, infrastructure deployment and the associated role of institutions, and generally support improved policymaking. However, access to data is often a barrier to starting energy system modeling, especially in developing countries, thereby causing delays to decision making. Therefore, this article provides data that can be used to create a simple zero-order energy system model for a range of developing countries in Africa, East Asia, and South America, which can act as a starting point for further model development and scenario analysis. The data are collected entirely from publicly available and accessible sources, including the websites and databases of international organisations, journal articles, and existing modeling studies. This means that the datasets can be easily updated based on the latest available information or more detailed and accurate local data. As an example, these data were also used to calibrate a simple energy system model for Kenya using the Open Source Energy Modeling System (OSeMOSYS) and three stylized scenarios (Fossil Future, Least Cost and Net Zero by 2050) for 2020-2050. The assumptions used and the results of these scenarios are presented in the appendix as an illustrative example of what can be done with these data. This simple model can be adapted and further developed by in-country analysts and academics, providing a platform for future work.

4.
IEEE Trans Vis Comput Graph ; 28(8): 2852-2866, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33290224

RESUMO

We present a technique that leverages ray tracing hardware available in recent Nvidia RTX GPUs to solve a problem other than classical ray tracing. Specifically, we demonstrate how to use these units to accelerate the point location of general unstructured elements consisting of both planar and bilinear faces. This unstructured mesh point location problem has previously been challenging to accelerate on GPU architectures; yet, the performance of these queries is crucial to many unstructured volume rendering and compute applications. Starting with a CUDA reference method, we describe and evaluate three approaches that reformulate these point queries to incrementally map algorithmic complexity to these new hardware ray tracing units. Each variant replaces the simpler problem of point queries with a more complex one of ray queries. Initial variants exploit ray tracing cores for accelerated BVH traversal, and subsequent variants use ray-triangle intersections and per-face metadata to detect point-in-element intersections. Although these later variants are more algorithmically complex, they are significantly faster than the reference method thanks to hardware acceleration. Using our approach, we improve the performance of an unstructured volume renderer by up to 4× for tetrahedral meshes and up to 15× for general bilinear element meshes, matching, or out-performing state-of-the-art solutions while simultaneously improving on robustness and ease-of-implementation.

5.
IEEE Trans Vis Comput Graph ; 27(8): 3361-3376, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32092009

RESUMO

This article presents a comprehensive study of rendering techniques for 3D line sets with transparency. The rendering of transparent lines is widely used for visualizing trajectories of tracer particles in flow fields. Transparency is then used to fade out lines deemed unimportant, based on, for instance, geometric properties or attributes defined along with them. Accurate blending of transparent lines requires rendering the lines in back-to-front or front-to-back order, yet enforcing this order for space-filling 3D line sets with extremely high-depth complexity becomes challenging. In this article, we study CPU and GPU rendering techniques for transparent 3D line sets. We compare accurate and approximate techniques using optimized implementations and several benchmark data sets. We discuss the effects of data size and transparency on quality, performance, and memory consumption. Based on our study, we propose two improvements to per-pixel fragment lists and multi-layer alpha blending. The first improves the rendering speed via an improved GPU sorting operation, and the second improves rendering quality via transparency-based bucketing.

6.
IEEE Trans Vis Comput Graph ; 27(2): 603-613, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33048707

RESUMO

To address the problem of ever-growing scientific data sizes making data movement a major hindrance to analysis, we introduce a novel encoding for scalar fields: a unified tree of resolution and precision, specifically constructed so that valid cuts correspond to sensible approximations of the original field in the precision-resolution space. Furthermore, we introduce a highly flexible encoding of such trees that forms a parameterized family of data hierarchies. We discuss how different parameter choices lead to different trade-offs in practice, and show how specific choices result in known data representation schemes such as zfp [52], idx [58], and jpeg2000 [76]. Finally, we provide system-level details and empirical evidence on how such hierarchies facilitate common approximate queries with minimal data movement and time, using real-world data sets ranging from a few gigabytes to nearly a terabyte in size. Experiments suggest that our new strategy of combining reductions in resolution and precision is competitive with state-of-the-art compression techniques with respect to data quality, while being significantly more flexible and orders of magnitude faster, and requiring significantly reduced resources.

7.
IEEE Trans Vis Comput Graph ; 27(2): 625-634, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33048750

RESUMO

Structured Adaptive Mesh Refinement (Structured AMR) enables simulations to adapt the domain resolution to save computation and storage, and has become one of the dominant data representations used by scientific simulations; however, efficiently rendering such data remains a challenge. We present an efficient approach for volume- and iso-surface ray tracing of Structured AMR data on GPU-equipped workstations, using a combination of two different data structures. Together, these data structures allow a ray tracing based renderer to quickly determine which segments along the ray need to be integrated and at what frequency, while also providing quick access to all data values required for a smooth sample reconstruction kernel. Our method makes use of the RTX ray tracing hardware for surface rendering, ray marching, space skipping, and adaptive sampling; and allows for interactive changes to the transfer function and implicit iso-surfacing thresholds. We demonstrate that our method achieves high performance with little memory overhead, enabling interactive high quality rendering of complex AMR data sets on individual GPU workstations.

8.
IEEE Trans Vis Comput Graph ; 27(2): 744-754, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33055032

RESUMO

Researchers in the field of connectomics are working to reconstruct a map of neural connections in the brain in order to understand at a fundamental level how the brain processes information. Constructing this wiring diagram is done by tracing neurons through high-resolution image stacks acquired with fluorescence microscopy imaging techniques. While a large number of automatic tracing algorithms have been proposed, these frequently rely on local features in the data and fail on noisy data or ambiguous cases, requiring time-consuming manual correction. As a result, manual and semi-automatic tracing methods remain the state-of-the-art for creating accurate neuron reconstructions. We propose a new semi-automatic method that uses topological features to guide users in tracing neurons and integrate this method within a virtual reality (VR) framework previously used for manual tracing. Our approach augments both visualization and interaction with topological elements, allowing rapid understanding and tracing of complex morphologies. In our pilot study, neuroscientists demonstrated a strong preference for using our tool over prior approaches, reported less fatigue during tracing, and commended the ability to better understand possible paths and alternatives. Quantitative evaluation of the traces reveals that users' tracing speed increased, while retaining similar accuracy compared to a fully manual approach.


Assuntos
Gráficos por Computador , Realidade Virtual , Algoritmos , Neurônios , Projetos Piloto
9.
Comput Graph Forum ; 39(3): 1-12, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34671172

RESUMO

Adaptive mesh refinement (AMR) techniques allow for representing a simulation's computation domain in an adaptive fashion. Although these techniques have found widespread adoption in high-performance computing simulations, visualizing their data output interactively and without cracks or artifacts remains challenging. In this paper, we present an efficient solution for direct volume rendering and hybrid implicit isosurface ray tracing of tree-based AMR (TB-AMR) data. We propose a novel reconstruction strategy, Generalized Trilinear Interpolation (GTI), to interpolate across AMR level boundaries without cracks or discontinuities in the surface normal. We employ a general sparse octree structure supporting a wide range of AMR data, and use it to accelerate volume rendering, hybrid implicit isosurface rendering and value queries. We demonstrate that our approach achieves artifact-free isosurface and volume rendering and provides higher quality output images compared to existing methods at interactive rendering rates.

10.
Eurographics Workshop Vis Comput Biomed ; 38(3): 467-478, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31840002

RESUMO

We present a general high-performance technique for ray tracing generalized tube primitives. Our technique efficiently supports tube primitives with fixed and varying radii, general acyclic graph structures with bifurcations, and correct transparency with interior surface removal. Such tube primitives are widely used in scientific visualization to represent diffusion tensor imaging tractographies, neuron morphologies, and scalar or vector fields of 3D flow. We implement our approach within the OSPRay ray tracing framework, and evaluate it on a range of interactive visualization use cases of fixed- and varying-radius streamlines, pathlines, complex neuron morphologies, and brain tractographies. Our proposed approach provides interactive, high-quality rendering, with low memory overhead.

11.
Artigo em Inglês | MEDLINE | ID: mdl-30334795

RESUMO

Adaptive mesh refinement (AMR) is a key technology for large-scale simulations that allows for adaptively changing the simulation mesh resolution, resulting in significant computational and storage savings. However, visualizing such AMR data poses a significant challenge due to the difficulties introduced by the hierarchical representation when reconstructing continuous field values. In this paper, we detail a comprehensive solution for interactive isosurface rendering of block-structured AMR data. We contribute a novel reconstruction strategy-the octant method-which is continuous, adaptive and simple to implement. Furthermore, we present a generally applicable hybrid implicit isosurface ray-tracing method, which provides better rendering quality and performance than the built-in sampling-based approach in OSPRay. Finally, we integrate our octant method and hybrid isosurface geometry into OSPRay as a module, providing the ability to create high-quality interactive visualizations combining volume and isosurface representations of BS-AMR data. We evaluate the rendering performance, memory consumption and quality of our method on two gigascale block-structured AMR datasets.

12.
IEEE Trans Vis Comput Graph ; 24(1): 994-1003, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866520

RESUMO

Tracing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used commercial software, consumer-grade VR presents a promising alternative for scientists.


Assuntos
Gráficos por Computador , Neuroanatomia/métodos , Neurônios/citologia , Interface Usuário-Computador , Humanos , Microscopia/métodos , Realidade Virtual , Visão Ocular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA