Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0092024, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874337

RESUMO

Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo-inositol. Myo-inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo-inositol (iol) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo-inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo-inositol. Within the iol clusters were an MFS-type (iolT1) and an ABC-type (iolXYZ) transporter and analyses showed that both transported myo-inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae, IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna.IMPORTANCEHost associated bacteria such as Vibrio coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo-inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo-inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo-inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.

2.
iScience ; 27(6): 110001, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38868203

RESUMO

Vibrio cholerae adapts to osmotic down-shifts by releasing metabolites through two mechanosensitive (MS) channels, low-threshold MscS and high-threshold MscL. To investigate each channel's contribution to the osmotic response, we generated ΔmscS, ΔmscL, and double ΔmscL ΔmscS mutants in V. cholerae O395. We characterized their tension-dependent activation in patch-clamp, and the millisecond-scale osmolyte release kinetics using a stopped-flow light scattering technique. We additionally generated numerical models describing osmolyte and water fluxes. We illustrate the sequence of events and define the parameters that characterize discrete phases of the osmotic response. Survival is correlated to the extent of cell swelling, the rate of osmolyte release, and the completeness of post-shock membrane resealing. Not only do the two channels interact functionally, but there is also an up-regulation of MscS in the ΔmscL strain, suggesting transcriptional crosstalk. The data reveal the role of MscS in the termination of the osmotic permeability response in V. cholerae.

3.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766061

RESUMO

Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo -inositol. Myo -inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo -inositol ( iol ) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo -inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo -inositol. Within the iol clusters were an MFS-type ( iolT1) and an ABC-type ( iolXYZ) transporter and analyses showed that both transported myo -inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae , IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna. IMPORTANCE: Host associated bacteria such as V. coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo -inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo -inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo -inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.

4.
Antonie Van Leeuwenhoek ; 117(1): 45, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424217

RESUMO

Strain AA17T was isolated from an apparently healthy fragment of Montipora capitata coral from the reef surrounding Moku o Lo'e in Kane'ohe Bay, O'ahu, Hawai'i, USA, and was taxonomically evaluated using a polyphasic approach. Comparison of a partial 16S rRNA gene sequence found that strain AA17T shared the greatest similarity with Aestuariibacter halophilus JC2043T (96.6%), and phylogenies based on 16S rRNA gene sequences grouped strain AA17T with members of the Aliiglaciecola, Aestuariibacter, Lacimicrobium, Marisediminitalea, Planctobacterium, and Saliniradius genera. To more precisely infer the taxonomy of strain AA17T, a phylogenomic analysis was conducted and indicated that strain AA17T formed a monophyletic clade with A. halophilus JC2043T, divergent from Aestuariibacter salexigens JC2042T and other related genera. As a result of monophyly and multiple genomic metrics of genus demarcation, strain AA17T and A. halophilus JC2043T comprise a distinct genus for which the name Fluctibacter gen. nov. is proposed. Based on a polyphasic characterisation and identifying differences in genomic and taxonomic data, strain AA17T represents a novel species, for which the name Fluctibacter corallii sp. nov. is proposed. The type strain is AA17T (= LMG 32603 T = NCTC 14664T). This work also supports the reclassification of A. halophilus as Fluctibacter halophilus comb. nov., which is the type species of the Fluctibacter genus. Genomic analyses also support the reclassification of Paraglaciecola oceanifecundans as a later heterotypic synonym of Paraglaciecola agarilytica.


Assuntos
Alteromonadaceae , Antozoários , Ácidos Graxos , Animais , Ácidos Graxos/análise , Havaí , Baías , RNA Ribossômico 16S/genética , Filogenia , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
5.
Microbiol Resour Announc ; 13(4): e0007924, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38393331

RESUMO

Alteromonas macleodii strain OCN004, a marine gammaproteobacterium in the Alteromonadaceae family, has primarily been studied as a non-pathogenic negative control bacterium during laboratory infection trials to test the virulence of bacterial coral pathogens. The draft genome sequence of A. macleodii strain OCN004 is presented here.

6.
Trends Microbiol ; 32(3): 252-269, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37758552

RESUMO

The provision of probiotics benefits the health of a wide range of organisms, from humans to animals and plants. Probiotics can enhance stress resilience of endangered organisms, many of which are critically threatened by anthropogenic impacts. The use of so-called 'probiotics for wildlife' is a nascent application, and the field needs to reflect on standards for its development, testing, validation, risk assessment, and deployment. Here, we identify the main challenges of this emerging intervention and provide a roadmap to validate the effectiveness of wildlife probiotics. We cover the essential use of inert negative controls in trials and the investigation of the probiotic mechanisms of action. We also suggest alternative microbial therapies that could be tested in parallel with the probiotic application. Our recommendations align approaches used for humans, aquaculture, and plants to the emerging concept and use of probiotics for wildlife.


Assuntos
Animais Selvagens , Probióticos , Animais , Humanos , Aquicultura
7.
PeerJ ; 11: e15836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637172

RESUMO

Effective treatment and prevention of any disease necessitates knowledge of the causative agent, yet the causative agents of most coral diseases remain unknown, in part due to the difficulty of distinguishing the pathogenic microbe(s) among the complex microbial backdrop of coral hosts. Stony coral tissue loss disease (SCTLD) is a particularly destructive disease of unknown etiology, capable of transmitting through the water column and killing entire colonies within a matter of weeks. Here we used a previously described method to (i) isolate diseased and apparently healthy coral colonies within individual mesocosms containing filtered seawater with low microbial background levels; (ii) incubate for several days to enrich the water with coral-shed microbes; (iii) use tangential-flow filtration to concentrate the microbial community in the mesocosm water; and then (iv) filter the resulting concentrate through a sequential series of different pore-sized filters. To investigate the size class of microorganism(s) associated with SCTLD transmission, we used 0.8 µm pore size filters to capture microeukaryotes and expelled zooxanthellae, 0.22 µm pore size filters to capture bacteria and large viruses, and 0.025 µm pore size filters to capture smaller viruses. In an attempt to further refine which size fraction(s) contained the transmissible element of SCTLD, we then applied these filters to healthy "receiver" coral fragments and monitored them for the onset of SCTLD signs over three separate experimental runs. However, several factors outside of our control confounded the transmission results, rendering them inconclusive. As the bulk of prior studies of SCTLD in coral tissues have primarily investigated the associated bacterial community, we chose to characterize the prokaryotic community associated with all mesocosm 0.22 µm pore size filters using Illumina sequencing of the V4 region of the 16S rRNA gene. We identified overlaps with prior SCTLD studies, including the presence of numerous previously identified SCTLD bioindicators within our mesocosms. The identification in our mesocosms of specific bacterial amplicon sequence variants that also appear across prior studies spanning different collection years, geographic regions, source material, and coral species, suggests that bacteria may play some role in the disease.


Assuntos
Antozoários , Animais , RNA Ribossômico 16S/genética , Biomarcadores Ambientais , Filtração , Água
8.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37214804

RESUMO

Like other intestinal bacteria, the facultative pathogen Vibrio cholerae adapts to a wide range of osmotic environments. Under drastic osmotic down-shifts, Vibrio avoids mechanical rupture by rapidly releasing excessive metabolites through mechanosensitive (MS) channels that belong to two major types, low-threshold MscS and high-threshold MscL. To investigate each channel individual contribution to V. cholerae osmotic permeability response, we generated individual ΔmscS, ∆mscL, and double ΔmscL ΔmscS mutants in V. cholerae O395 and characterized their tension-dependent activation in patch-clamp experiments, as well as their millisecond-scale osmolyte release kinetics using a stopped-flow light scattering technique. We additionally generated numerical models reflecting the kinetic competition of osmolyte release with water influx. Both mutants lacking MscS exhibited delayed osmolyte release kinetics and decreased osmotic survival rates compared to WT. The ΔmscL mutant showed comparable release kinetics to WT, but a higher osmotic survival, while ΔmscS had low survival, comparable to the double ΔmscL ΔmscS mutant. By analyzing release kinetics following rapid medium dilution, we illustrate the sequence of events and define the set of parameters that characterize discrete phases of the osmotic response. Osmotic survival rates are directly correlated to the extent and duration of cell swelling, the rate of osmolyte release and the onset time, and the completeness of the post-shock membrane resealing. Not only do the two channels interact functionally during the resealing phase, but there is also a compensatory up-regulation of MscS in the ΔmscL strain suggesting some transcriptional crosstalk. The data reveal the advantage of the low-threshold MscS channel in curbing tension surges, without which MscL becomes toxic, and the role of MscS in the proper termination of the osmotic permeability response in Vibrio.

9.
Commun Biol ; 6(1): 248, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024599

RESUMO

Considered one of the most devastating coral disease outbreaks in history, stony coral tissue loss disease (SCTLD) is currently spreading throughout Florida's coral reefs and the greater Caribbean. SCTLD affects at least two dozen different coral species and has been implicated in extensive losses of coral cover. Here we show Pseudoalteromonas sp. strain McH1-7 has broad-spectrum antibacterial activity against SCTLD-associated bacterial isolates. Chemical analyses indicated McH1-7 produces at least two potential antibacterials, korormicin and tetrabromopyrrole, while genomic analysis identified the genes potentially encoding an L-amino acid oxidase and multiple antibacterial metalloproteases (pseudoalterins). During laboratory trials, McH1-7 arrested or slowed disease progression on 68.2% of diseased Montastraea cavernosa fragments treated (n = 22), and it prevented disease transmission by 100% (n = 12). McH1-7 is the most chemically characterized coral probiotic that is an effective prophylactic and direct treatment for the destructive SCTLD as well as a potential alternative to antibiotic use.


Assuntos
Antozoários , Animais , Antozoários/microbiologia , Recifes de Corais , Genômica , Região do Caribe
10.
Antonie Van Leeuwenhoek ; 116(2): 129-141, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36287289

RESUMO

Clade-based taxonomy has become a recognised means of classifying members of the family Vibrionaceae. A multilocus sequence analysis (MLSA) approach based on eight housekeeping genes can be used to infer phylogenetic relationships, which then groups species into monophyletic clades. Recent work on the Vibrionaceae clades added newly described species and updated existing relationships; the Nereis clade currently includes Vibrio nereis and Vibrio hepatarius. A publication characterising Vibrio japonicus as a novel species placed it within the Nereis clade, but this strain was not included in a recently published taxonomic update because a genome sequence was not available for phylogenetic assessment. To resolve this discrepancy and assess the taxonomic position of V. japonicus within the updated clades, we sequenced the complete genome of V. japonicus JCM 31412 T and conducted phylogenetic and genomic analyses of this clade. Vibrio japonicus remains within the Nereis clade and phylogenomic, average nucleotide identity (ANI), and average amino acid identity (AAI) analyses confirm this relationship. Additional genomic assessments on all Nereis clade members found gene clusters and inferred functionalities shared among the species. This work represents the first complete genome of a member of the Nereis clade and updates the clade-based taxonomy of the Vibrionaceae family.


Assuntos
Genoma Bacteriano , Vibrio , Análise de Sequência de DNA , Filogenia , DNA Bacteriano/genética , Vibrio/genética , RNA Ribossômico 16S/genética
11.
Arch Microbiol ; 204(12): 717, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36401660

RESUMO

Strain 5675061T was isolated from a deep-sea microbial mat near hydrothermal vents within the Axial Seamount caldera on the Juan de Fuca Ridge (NE Pacific Ocean) and was taxonomically evaluated using a polyphasic approach. Morphological and chemotaxonomic properties are consistent with characteristics of the genus Streptomyces: aerobic Gram-stain-positive filaments that form spores, L,L-diaminopimelic acid in whole-cell hydrolysates, and iso-C16:0 as the major fatty acid. Phylogenetic analysis, genomic, and biochemical comparisons show close evolutionary relatedness to Streptomyces lonarensis NCL716T, S. bohaiensis 11A07T, and S. otsuchiensis OTB305T but genomic relatedness indices identify strain 5675061T as a distinct species. Based on a polyphasic characterization, identifying differences in genomic and taxonomic data, strain 5675061T represents a novel species, for which the name Streptomyces spiramenti sp. nov. is proposed. The type strain is 5675061T (=LMG 31896T = DSM 111793T).


Assuntos
Streptomyces , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases
12.
Biol Bull ; 243(1): 76-83, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36108037

RESUMO

AbstractCoral populations are declining worldwide as a result of increased environmental stressors, including disease. Coral health is greatly dependent on complex interactions between the host animal and its associated microbial symbionts. While relatively understudied, there is growing evidence that the coral microbiome contributes to the health and resilience of corals in a variety of ways, similar to more well-studied systems, such as the human microbiome. Many of these interactions are dependent upon the production and exchange of natural products, including antibacterial compounds, quorum-sensing molecules, internal signaling molecules, nutrients, and so on. While advances in sequencing, culturing, and metabolomic techniques have aided in moving forward the understanding of coral microbiome interactions, current sequence and metabolite databases are lacking, hindering detailed descriptions of the microbes and metabolites involved. This review focuses on the roles of coral microbiomes in health and disease processes of coral hosts, with special attention to the coral metabolome. We discuss what is currently known about the relationship between the coral microbiome and disease, of beneficial microbial products or services, and how the manipulation of the coral microbiome may chemically benefit the coral host against disease. Understanding coral microbiome-metabolome interactions is critical to assisting management, conservation, and restoration strategies.


Assuntos
Antozoários , Produtos Biológicos , Microbiota , Animais , Antibacterianos , Bactérias , Humanos , Metaboloma
13.
Antonie Van Leeuwenhoek ; 115(9): 1215-1228, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35920985

RESUMO

Strain OCN044T was isolated from the homogenised tissue and mucus of an apparently healthy Acropora cytherea coral fragment collected from the western reef terrace of Palmyra Atoll in the Northern Line Islands and was taxonomically evaluated with a polyphasic approach. The morphological and chemotaxonomic properties are consistent with characteristics of the genus Vibrio: Gram-stain-negative rods, oxidase- and catalase-positive, and motile by means of a polar flagellum. Strain OCN044T can be differentiated as a novel subspecies based on 21 differences among chemotaxonomic features (e.g., fatty acids percentages for C12:0 and C18:1 ω7c), enzymatic activities (e.g., DNase and cystine arylamidase), and carbon sources utilized (e.g., L-xylose and D-melezitose) from its nearest genetic relative. Phylogenetic analysis and genomic comparisons show close evolutionary relatedness to Vibrio tetraodonis A511T but the overall genomic relatedness indices identify strain OCN044T as a distinct subspecies. Based on a polyphasic characterisation, differences in genomic and taxonomic data, strain OCN044T represents a novel subspecies of V. tetraodonis A511T, for which the name Vibrio tetraodonis subsp. pristinus subsp. nov. is proposed. The type strain is OCN044T (= LMG 31895T = DSM 111778T).


Assuntos
Antozoários , Vibrio , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Nat Microbiol ; 7(11): 1726-1735, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35864220

RESUMO

Global biodiversity loss and mass extinction of species are two of the most critical environmental issues the world is currently facing, resulting in the disruption of various ecosystems central to environmental functions and human health. Microbiome-targeted interventions, such as probiotics and microbiome transplants, are emerging as potential options to reverse deterioration of biodiversity and increase the resilience of wildlife and ecosystems. However, the implementation of these interventions is urgently needed. We summarize the current concepts, bottlenecks and ethical aspects encompassing the careful and responsible management of ecosystem resources using the microbiome (termed microbiome stewardship) to rehabilitate organisms and ecosystem functions. We propose a real-world application framework to guide environmental and wildlife probiotic applications. This framework details steps that must be taken in the upscaling process while weighing risks against the high toll of inaction. In doing so, we draw parallels with other aspects of contemporary science moving swiftly in the face of urgent global challenges.


Assuntos
Conservação dos Recursos Naturais , Microbiota , Animais , Humanos , Conservação dos Recursos Naturais/métodos , Biodiversidade , Animais Selvagens
15.
Microbiology (Reading) ; 168(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35380530

RESUMO

The bacterium Vibrio coralliilyticus has been implicated in mass mortalities of corals and shellfish larvae. However, using corals for manipulative infection experiments can be logistically difficult compared to other model organisms, so we aimed to establish oyster larvae infections as a proxy model. Therefore, this study assessed the virulence of six wild-type V. coralliilyticus strains, and mutants of one strain with deletions of known virulence factors, between Pacific oyster larvae (Crassostrea gigas) and Hawaiian rice coral (Montipora capitata) infection systems. The wild-type strains tested displayed variable virulence in each system, but virulence levels between hosts were not necessarily comparable. Strains RE98 and OCN008 maintained a medium to high level of virulence across hosts and appeared to be more generalist pathogens. Strain H1, in contrast, was avirulent towards coral but displayed a medium level of virulence towards oyster larvae. Interestingly, the BAA-450 type strain had a medium level of virulence towards coral and was the least virulent to oyster larvae. A comparison of known virulence factors determined that the flagellum, motility or chemotaxis, all of which play a significant role in coral infections, were not crucial for oyster infections with strain OCN008. A genomic comparison of the newly sequenced strain H1 with the other strains tested identified 16 genes potentially specific to coral pathogens that were absent in H1. This is both the first comparison of various V. coralliilyticus strains across infection systems and the first investigation of a strain that is non-virulent to coral. Our results indicate that the virulence of V. coralliilyticus strains in coral is not necessarily indicative of virulence in oyster larvae, and that the set of genes tested are not required for virulence in both model systems. This study increases our understanding of the virulence between V. coralliilyticus strains and helps assess their potential threat to marine environments and shellfish industries.


Assuntos
Antozoários , Crassostrea , Vibrio , Animais , Antozoários/microbiologia , Crassostrea/microbiologia , Larva/microbiologia , Vibrio/genética , Virulência/genética
16.
J Nat Prod ; 85(3): 462-478, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35112871

RESUMO

Stony corals (Scleractinia) are invertebrates that form symbiotic relationships with eukaryotic algal endosymbionts and the prokaryotic microbiome. The microbiome has the potential to produce bioactive natural products providing defense and resilience to the coral host against pathogenic microorganisms, but this potential has not been extensively explored. Bacterial pathogens can pose a significant threat to corals, with some species implicated in primary and opportunistic infections of various corals. In response, probiotics have been proposed as a potential strategy to protect corals in the face of increased incidence of disease outbreaks. In this study, we screened bacterial isolates from healthy and diseased corals for antibacterial activity. The bioactive extracts were analyzed using untargeted metabolomics. Herein, an UpSet plot and hierarchical clustering analyses were performed to identify isolates with the largest number of unique metabolites. These isolates also displayed different antibacterial activities. Through application of in silico and experimental approaches coupled with genome analysis, we dereplicated natural products from these coral-derived bacteria from Florida's coral reef environments. The metabolomics approach highlighted in this study serves as a useful resource to select probiotic candidates and enables insights into natural product-mediated chemical ecology in holobiont symbiosis.


Assuntos
Antozoários , Produtos Biológicos , Animais , Antozoários/microbiologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/genética , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Metabolômica , Simbiose
17.
Biol Methods Protoc ; 7(1): bpac007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187265

RESUMO

The causative agents of most coral diseases today remain unknown, complicating disease response and restoration efforts. Pathogen identifications can be hampered by complex microbial communities naturally associated with corals and seawater, which create complicating "background noise" that can potentially obscure a pathogen's signal. Here, we outline an approach to investigate waterborne coral diseases that use a combination of coral mesocosms, tangential flow filtration, and size fractionation to reduce the impact of this background microbial diversity, compensate for unknown infectious dose, and further narrow the suspect pool of potential pathogens. As proof of concept, we use this method to compare the bacterial communities shed into six Montastraea cavernosa coral mesocosms and demonstrate this method effectively detects differences between diseased and healthy coral colonies. We found several amplicon sequence variants (ASVs) in the diseased mesocosms that represented 100% matches with ASVs identified in prior studies of diseased coral tissue, further illustrating the effectiveness of our approach. Our described method is an effective alternative to using coral tissue or mucus to investigate waterborne coral diseases of unknown etiology and can help more quickly narrow the pool of possible pathogens to better aid in disease response efforts. Additionally, this versatile method can be easily adapted to characterize either the entire microbial community associated with a coral or target-specific microbial groups, making it a beneficial approach regardless of whether a causative agent is suspected or is completely unknown.

18.
Microbiol Resour Announc ; 10(50): e0109321, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34913711

RESUMO

Aestuariibacter halophilus strain JC2043, a Gram-negative gammaproteobacterium, is often used as a reference organism for assigning taxonomy within the family Alteromonadaceae. Isolates of this species have also been investigated for compound degradation (e.g., phthalates and oil) and biofilm association. Presented here is the draft genome sequence of A. halophilus strain JC2043.

19.
Microbiol Resour Announc ; 10(49): e0107121, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34881986

RESUMO

Planctobacterium marinum strain K7 is a Gram-negative gammaproteobacterium of the Alteromonadaceae family and is the sole type strain in the genus Planctobacterium. Presented here is the draft whole-genome sequence of P. marinum strain K7.

20.
Front Microbiol ; 11: 569354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193161

RESUMO

A deadly coral disease outbreak has been devastating the Florida Reef Tract since 2014. This disease, stony coral tissue loss disease (SCTLD), affects at least 22 coral species causing the progressive destruction of tissue. The etiological agents responsible for SCTLD are unidentified, but pathogenic bacteria are suspected. Virulence screens of 400 isolates identified four potentially pathogenic strains of Vibrio spp. subsequently identified as V. coralliilyticus. Strains of this species are known coral pathogens; however, cultures were unable to consistently elicit tissue loss, suggesting an opportunistic role. Using an improved immunoassay, the VcpA RapidTest, a toxic zinc-metalloprotease produced by V. coralliilyticus was detected on 22.3% of diseased Montastraea cavernosa (n = 67) and 23.5% of diseased Orbicella faveolata (n = 24). VcpA+ corals had significantly higher mortality rates and faster disease progression. For VcpA- fragments, 21.6% and 33.3% of M. cavernosa and O. faveolata, respectively, died within 21 d of observation, while 100% of similarly sized VcpA+ fragments of both species died during the same period. Further physiological and genomic analysis found no apparent differences between the Atlantic V. coralliilyticus strains cultured here and pathogens from the Indo-Pacific but highlighted the diversity among strains and their immense genetic potential. In all, V. coralliilyticus may be causing coinfections that exacerbate existing SCTLD lesions, which could contribute to the intraspecific differences observed between colonies. This study describes potential coinfections contributing to SCTLD virulence as well as diagnostic tools capable of tracking the pathogen involved, which are important contributions to the management and understanding of SCTLD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA