Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 962495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072224

RESUMO

Plasmodium falciparum gametocytes have unique morphology, metabolism, and protein expression profiles in their asexual stages of development. In addition to the striking changes in their appearance, a wide variety of "exo-membrane structures" are newly formed in the gametocyte stage. Little is known about their function, localization, or three-dimensional structural information, and only some structural data, typically two-dimensional, have been reported using conventional electron microscopy or fluorescence microscopy. For better visualization of intracellular organelle and exo-membrane structures, we previously established an unroofing technique to directly observe Maurer's clefts (MCs) in asexual parasitized erythrocytes by removing the top part of the cell's membrane followed by transmission electron microscopy. We found that MCs have numerous tethers connecting themselves to the host erythrocyte membrane skeletons. In this study, we investigated the intracellular structures of gametocytes using unroofing-TEM, Serial Block Face scanning electron microscopy, and fluorescence microscopy to unveil the exo-membrane structures in gametocytes. Our data showed "balloon/pouch"-like objects budding from the parasitophorous vacuole membrane (PVM) in gametocytes, and some balloons included multiple layers of other balloons. Furthermore, numerous bubbles appeared on the inner surface of the erythrocyte membrane or PVM; these were similar to MC-like membranes but were smaller than asexual MCs. Our study demonstrated P. falciparum reforms exo-membranes in erythrocytes to meet stage-specific biological activities during their sexual development.


Assuntos
Imageamento Tridimensional , Plasmodium falciparum , Eritrócitos , Microscopia Eletrônica , Organelas
2.
Sci Rep ; 11(1): 21406, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725450

RESUMO

The scanning electron microscope (SEM) has been reassembled into a new type of cryo-electron microscope (cryo-TSEM) by installing a new cryo-transfer holder and anti-contamination trap, which allowed simultaneous acquisition of both transmission images (STEM images) and surface images (SEM images) in the frozen state. The ultimate temperatures of the holder and the trap reached - 190 °C and - 210 °C, respectively, by applying a liquid nitrogen slush. The STEM images at 30 kV were comparable to, or superior to, the images acquired with conventional transmission electron microscope (100 kV TEM) in contrast and sharpness. The unroofing method was used to observe membrane cytoskeletons instead of the frozen section and the FIB methods. Deep sublimation of ice surrounding unroofed cells by regulating temperature enabled to emerge intracellular fine structures in thick frozen cells. Hence, fine structures in the vicinity of the cell membrane such as the cytoskeleton, polyribosome chains and endoplasmic reticulum (ER) became visible. The ER was distributed as a wide, flat structure beneath the cell membrane, forming a large spatial network with tubular ER.


Assuntos
Microscopia Crioeletrônica/métodos , Retículo Endoplasmático/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Capsídeo/ultraestrutura , Membrana Celular/ultraestrutura , Citoesqueleto , Desenho de Equipamento , Secções Congeladas , Gelo , Processamento de Imagem Assistida por Computador , Ribossomos/ultraestrutura , Temperatura , Vírus do Mosaico do Tabaco/ultraestrutura
3.
Parasitol Int ; 80: 102179, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32853776

RESUMO

Plasmodium falciparum (P. falciparum) parasites still cause lethal infections worldwide, especially in Africa (https://www.who.int/publications/i/item/world-malaria-report-2019). During P. falciparum blood-stage infections in humans, low-density lipoprotein, high-density lipoprotein and cholesterol levels in the blood become low. Because P. falciparum lacks a de novo cholesterol synthesis pathway, it must import cholesterol from the surrounding environment. However, the origin of the cholesterol and how it is taken up by the parasite across the multiple membranes that surround it is not fully understood. To answer this, we used a cholesterol synthesis inhibiter (simvastatin), a cholesterol transport inhibitor (ezetimibe), and an activating ligand of the peroxisome proliferator-activated receptor α, called ciprofibrate, to investigate the effects of these agents on the intraerythrocytic growth of P. falciparum, both with and without HepG2 cells as the lipoprotein feeders. P. falciparum growth was inhibited in the presence of ezetimibe, but ezetimibe was not very effective at inhibiting P. falciparum growth when used in the co-culture system, unlike simvastatin, which strongly promoted parasite growth in this system. Ezetimibe is known to inhibit cholesterol absorption by blocking the activity of Niemann-Pick C1 like 1 (NPC1L1) protein, and simvastatin is known to enhance NPC1L1 expression in the human body's small intestine. Collectively, our results support the possibility that cholesterol import by P. falciparum involves hepatocytes, and cholesterol uptake into the parasite occurs via NPC1L1 protein or an NPC1L1 homolog during the erythrocytic stages of the P. falciparum lifecycle.


Assuntos
Colesterol/metabolismo , Eritrócitos/metabolismo , Ezetimiba/farmacologia , Ácidos Fíbricos/farmacologia , Hipolipemiantes/farmacologia , Plasmodium falciparum/fisiologia , Sinvastatina/farmacologia , Anticolesterolemiantes/farmacologia , Células Hep G2 , Humanos
4.
Microscopy (Oxf) ; 69(6): 350-359, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-32447402

RESUMO

Unroofing, which is the mechanical shearing of a cell to expose the cytoplasmic surface of the cell membrane, is a unique preparation method that allows membrane cytoskeletons to be observed by cryo-electron microscopy, atomic force microscopy, freeze-etching electron microscopy and other methods. Ultrasound and adhesion have been known to mechanically unroof cells. In this study, unroofing using these two means was denoted sonication unroofing and adhesion unroofing, respectively. We clarified the mechanisms by which cell membranes are removed in these unroofing procedures and established efficient protocols for each based on the mechanisms. In sonication unroofing, fine bubbles generated by sonication adhered electrostatically to apical cell surfaces and then removed the apical (dorsal) cell membrane with the assistance of buoyancy and water flow. The cytoplasmic surface of the ventral cell membrane remaining on the grids became observable by this method. In adhesion unroofing, grids charged positively by coating with Alcian blue were pressed onto the cells, thereby tightly adsorbing the dorsal cell membrane. Subsequently, a part of the cell membrane strongly adhered to the grids was peeled from the cells and transferred onto the grids when the grids were lifted. This method thus allowed the visualization of the cytoplasmic surface of the dorsal cell membrane. This paper describes robust, improved protocols for the two unroofing methods in detail. In addition, micro-unroofing (perforation) likely due to nanobubbles is introduced as a new method to make cells transparent to electron beams.


Assuntos
Membrana Celular/ultraestrutura , Microscopia Crioeletrônica/métodos , Citoesqueleto/ultraestrutura , Técnicas de Preparação Histocitológica , Microscopia de Força Atômica/métodos , Microscopia Eletrônica/métodos , Técnica de Congelamento e Réplica , Sonicação
5.
Biochimie ; 171-172: 1-11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32004653

RESUMO

Oxidative folding of proinsulin in the endoplasmic reticulum (ER) is critical for the proper sorting and secretion of insulin from pancreatic ß-cells. Here, by using non-cell-based insulin aggregation assays and mouse insulinoma-derived MIN6 cells, we searched for a candidate molecular chaperone for (pro)insulin when its oxidative folding is compromised. We found that interaction between insulin and calreticulin (CRT), a lectin that acts as an ER-resident chaperone, was enhanced by reductive stress in MIN6 cells. Co-incubation of insulin with recombinant CRT prevented reductant-induced aggregation of insulin. Furthermore, lysosomal degradation of proinsulin, which was facilitated by dithiothreitol-induced reductive stress, depended on CRT in MIN6 cells. Together, our results suggest that CRT may be a protective molecule against (pro)insulin aggregation when oxidative folding is defective, e.g. under reductive stress conditions, in vitro and in cultured cells. Because CRT acts as a molecular chaperone for not only glycosylated proteins but also non-glycosylated polypeptides, we also propose that (pro)insulin is a novel candidate client of the chaperone function of CRT.


Assuntos
Calreticulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Chaperonas Moleculares/metabolismo , Proinsulina/metabolismo , Animais , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Células Secretoras de Insulina/patologia , Camundongos , Agregação Patológica de Proteínas , Dobramento de Proteína
6.
Sci Rep ; 7(1): 6462, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743939

RESUMO

The use of cryosectioning facilitates the morphological analysis and immunocytochemistry of cells in tissues in atomic force microscopy (AFM). The cantilever can access all parts of a tissue sample in cryosections after the embedding medium (sucrose) has been replaced with phosphate-buffered saline (PBS), and this approach has enabled the production of a type of high-resolution image. The images resembled those obtained from freeze-etching replica electron microscopy (EM) rather than from thin-section EM. The AFM images showed disks stacked and enveloped by the cell membrane in rod photoreceptor outer segments (ROS) at EM resolution. In addition, ciliary necklaces on the surface of connecting cilium, three-dimensional architecture of synaptic ribbons, and the surface of the post-synaptic membrane facing the active site were revealed, which were not apparent using thin-section EM. AFM could depict the molecular binding of anti-opsin antibodies conjugated to a secondary fluorescent antibody bound to the disk membrane. The specific localization of the anti-opsin binding sites was verified through correlation with immunofluorescence signals in AFM combined with confocal fluorescence microscope. To prove reproducibility in other tissues besides retina, cryosectioning-AFM was also applied to elucidate molecular organization of sarcomere in a rabbit psoas muscle.


Assuntos
Crioultramicrotomia/métodos , Imuno-Histoquímica/métodos , Microscopia de Força Atômica/métodos , Músculos Psoas/citologia , Retina/citologia , Animais , Glutaral , Células Fotorreceptoras de Vertebrados/citologia , Coelhos , Retina/química , Sarcômeros , Sacarose , Inclusão do Tecido/métodos , Xenopus laevis
7.
Microscopy (Oxf) ; 65(6): 488-498, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27587510

RESUMO

An improved unroofing method consisting of tearing off the cell membrane using an adhesive electron microscopy (EM) grid instead of vitreous ice sectioning (cryo-sectioning) has enabled us to panoramically view the membrane cytoskeleton in its native state with extremely high contrast. Grids pre-treated with Alcian blue were placed on cells, and a portion of the dorsal plasma membrane was transferred onto the grid, which was then floated in buffer solution. These membrane fragments contained sufficient cytoskeleton and were of suitable thickness for observation by cryo-EM. Many actin filaments and microtubules were clearly observed on the cytoplasmic surface of the plasma membrane with extremely high contrast because the soluble components of the cytoplasm flowed out and broke away from the cells. Actin filaments extended in all directions in a smooth contour with little branching. Microtubules spread out as far as 3 µm or more while winding gently in their native state. Upon fixation with 1% glutaraldehyde, however, the microtubules became straight and fragmented. Cryo-EM revealed for the first time a smooth endoplasmic reticulum network beneath the cell membrane in native cells. Clathrin coats and caveolae were also observed on the cytoplasmic surface of the plasma membrane, similar to those seen using freeze-etching replica EM (freeze-etching EM). Unroofing was also useful for immuno-labelling in cryo-EM. Antibody-labelled IQGAP1, one of the effector proteins facilitating the formation of actin filament networks, was localized alongside actin filaments. Freeze-etching EM confirmed the morphological findings of cryo-EM.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica/métodos , Retículo Endoplasmático Liso/ultraestrutura , Técnica de Congelamento e Réplica/métodos , Animais , Células Cultivadas , Glutaral/química , Rim/citologia , Microtúbulos/fisiologia , Ratos , Fixação de Tecidos
8.
Sci Rep ; 6: 27472, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27273367

RESUMO

An improved unroofing method enabled the cantilever of an atomic force microscope (AFM) to reach directly into a cell to visualize the intracellular cytoskeletal actin filaments, microtubules, clathrin coats, and caveolae in phosphate-buffered saline (PBS) at a higher resolution than conventional electron microscopy. All of the actin filaments clearly exhibited a short periodicity of approximately 5-6 nm, which was derived from globular actins linked to each other to form filaments, as well as a long helical periodicity. The polarity of the actin filaments appeared to be determined by the shape of the periodic striations. Microtubules were identified based on their thickness. Clathrin coats and caveolae were observed on the cytoplasmic surface of cell membranes. The area containing clathrin molecules and their terminal domains was directly visualized. Characteristic ridge structures located at the surface of the caveolae were observed at high resolution, similar to those observed with electron microscopy (EM). Overall, unroofing allowed intracellular AFM imaging in a liquid environment with a level of quality equivalent or superior to that of EM. Thus, AFMs are anticipated to provide cutting-edge findings in cell biology and histology.


Assuntos
Citoesqueleto/metabolismo , Microscopia de Força Atômica , Animais , Clatrina/metabolismo , Microscopia Eletrônica , Microtúbulos/metabolismo
9.
Microscopy (Oxf) ; 65(4): 370-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27242058

RESUMO

Actin filaments, the actin-myosin complex and the actin-tropomyosin complex were observed by a tip-scan atomic force microscope (AFM), which was recently developed by Olympus as the AFM part of a correlative microscope. This newly developed AFM uses cantilevers of similar size as stage-scan AFMs to improve substantially the spatial and temporal resolution. Such an approach has previously never been possible by a tip-scan system, in which a cantilever moves in the x, y and z directions. We evaluated the performance of this developed tip-scan AFM by observing the molecular structure of actin filaments and the actin-tropomyosin complex. In the image of the actin filament, the molecular interval of the actin subunits (∼5.5 nm) was clearly observed as stripes. From the shape of the stripes, the polarity of the actin filament was directly determined and the results were consistent with the polarity determined by myosin binding. In the image of the actin-tropomyosin complex, each tropomyosin molecule (∼2 nm in diameter) on the actin filament was directly observed without averaging images of different molecules. Each tropomyosin molecule on the actin filament has never been directly observed by AFM or electron microscopy. Thus, our developed tip-scan AFM offers significant potential in observing purified proteins and cellular structures at nanometer resolution. Current results represent an important step in the development of a new correlative microscope to observe nm-order structures at an acceptable frame rate (∼10 s/frame) by AFM at the position indicated by the fluorescent dye observed under a light microscope.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Microscopia de Força Atômica/métodos , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Tropomiosina/metabolismo , Animais , Coelhos
10.
Nat Commun ; 7: 10060, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26725982

RESUMO

The receptor tyrosine kinase-like orphan receptor 1 (ROR1) sustains prosurvival signalling directly downstream of the lineage-survival oncogene NKX2-1/TTF-1 in lung adenocarcinoma. Here we report an unanticipated function of this receptor tyrosine kinase (RTK) as a scaffold of cavin-1 and caveolin-1 (CAV1), two essential structural components of caveolae. This kinase-independent function of ROR1 facilitates the interactions of cavin-1 and CAV1 at the plasma membrane, thereby preventing the lysosomal degradation of CAV1. Caveolae structures and prosurvival signalling towards AKT through multiple RTKs are consequently sustained. These findings provide mechanistic insight into how ROR1 inhibition can overcome EGFR-tyrosine kinase inhibitor (TKI) resistance due to bypass signalling via diverse RTKs such as MET and IGF-IR, which is currently a major clinical obstacle. Considering its onco-embryonic expression, inhibition of the scaffold function of ROR1 in patients with lung adenocarcinoma is an attractive approach for improved treatment of this devastating cancer.


Assuntos
Caveolina 1/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Adenocarcinoma/terapia , Antineoplásicos/farmacologia , Caveolina 1/genética , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/terapia , Fosforilação , Análise Serial de Proteínas , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Transdução de Sinais
11.
Exp Parasitol ; 153: 174-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25825251

RESUMO

Intraerythrocytic stages of Plasmodium falciparum parasites modify the membranes of their host erythrocytes with numerous expressed proteins. They also install new membranous structures in the erythrocyte cytoplasm, including Maurer's clefts (MC) and a tubulovesicular network. These structures support molecular trafficking processes that are necessary for the growth and multiplication of P. falciparum intraerythrocytic stages. To study the morphology and organization of these modifications, we prepared samples of P. falciparum-infected erythrocytes by 'unroofing' techniques and examined them by transmission electron microscopy. Images of the 'unroofed' parasitized erythrocytes feature cytoskeleton alterations and the presence of new membranous structures generated by P. falciparum, including small vesicles and MC connected by extensions to the inner erythrocyte membrane. Non-parasitized erythrocytes showed no evidence of these structures or extensions. In further experiments, we observed a relative absence of MC and extensions after treatment of parasitized erythrocytes with aluminum tetrafluoride (AlF4(-)), an inhibitor of vesicle trafficking. The morphology and physical location of MC, extensions and small vesicles in unroofed specimens are consistent with the role of these structures in the trafficking of P. falciparum proteins to the surface of parasitized erythrocytes.


Assuntos
Eritrócitos/ultraestrutura , Malária Falciparum/sangue , Plasmodium falciparum/fisiologia , Citoesqueleto/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Humanos , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Microscopia Eletrônica de Transmissão
12.
Cell Rep ; 10(5): 796-808, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25660028

RESUMO

In vertebrate retinal development, the axonal terminals of retinal neurons make synaptic contacts within narrow fixed regions, and these locations are maintained thereafter. However, the mechanisms and biological logic of the organization of these fixed synapse locations are poorly understood. We show here that a membrane scaffold protein, 4.1G, is highly expressed in retinal photoreceptors and is essential for the arrangement of their correct synapse location. The 4.1G-deficient retina exhibits mislocalization of photoreceptor terminals, although their synaptic connections are normally formed. The 4.1G protein binds to the AP3B2 protein, which is involved in neuronal membrane trafficking, and promotes neurite extension in an AP3B2-dependent manner. 4.1G mutant mice showed visual acuity impairments in an optokinetic response, suggesting that correct synapse location is required for normal visual function. Taken together, the data in this study provide insight into the mechanism and importance of proper synapse location in neural circuit formation.

13.
Proc Natl Acad Sci U S A ; 111(26): 9461-6, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24979786

RESUMO

Outer arm dynein (OAD) in cilia and flagella is bound to the outer doublet microtubules every 24 nm. Periodic binding of OADs at specific sites is important for efficient cilia/flagella beating; however, the molecular mechanism that specifies OAD arrangement remains elusive. Studies using the green alga Chlamydomonas reinhardtii have shown that the OAD-docking complex (ODA-DC), a heterotrimeric complex present at the OAD base, functions as the OAD docking site on the doublet. We find that the ODA-DC has an ellipsoidal shape ∼24 nm in length. In mutant axonemes that lack OAD but retain the ODA-DC, ODA-DC molecules are aligned in an end-to-end manner along the outer doublets. When flagella of a mutant lacking ODA-DCs are supplied with ODA-DCs upon gamete fusion, ODA-DC molecules first bind to the mutant axonemes in the proximal region, and the occupied region gradually extends toward the tip, followed by binding of OADs. This and other results indicate that a cooperative association of the ODA-DC underlies its function as the OAD-docking site and is the determinant of the 24-nm periodicity.


Assuntos
Axonema/metabolismo , Dineínas/metabolismo , Substâncias Macromoleculares/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Western Blotting , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Eletroporação , Imunofluorescência , Microscopia Eletrônica , Microscopia de Fluorescência , Ligação Proteica , Corantes de Rosanilina , Ultracentrifugação
14.
J Cell Biol ; 202(1): 25-33, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23816620

RESUMO

The formation of a functional spindle requires microtubule (MT) nucleation from within the spindle, which depends on augmin. How augmin contributes to MT formation and organization is not known because augmin-dependent MTs have never been specifically visualized. In this paper, we identify augmin-dependent MTs and their connections to other MTs by electron tomography and 3D modeling. In metaphase spindles of human cells, the minus ends of MTs were located both around the centriole and in the body of the spindle. When augmin was knocked down, the latter population of MTs was significantly reduced. In control cells, we identified connections between the wall of one MT and the minus end of a neighboring MT. Interestingly, the connected MTs were nearly parallel, unlike other examples of end-wall connections between cytoskeletal polymers. Our observations support the concept of augmin-dependent MT nucleation at the walls of existing spindle MTs. Furthermore, they suggest a mechanism for maintaining polarized MT organization, even when noncentrosomal MT initiation is widespread.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Fuso Acromático/química , Linhagem Celular Tumoral , Centríolos/química , Tomografia com Microscopia Eletrônica , Humanos , Imageamento Tridimensional , Metáfase , Proteínas Associadas aos Microtúbulos/genética , Polimerização , Ligação Proteica , Interferência de RNA , Fuso Acromático/genética , Eletricidade Estática , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
15.
Biochim Biophys Acta ; 1832(10): 1549-59, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23712071

RESUMO

Recent studies have suggested a possible involvement of abnormal tau in some retinal degenerative diseases. The common view in these studies is that these retinal diseases share the mechanism of tau-mediated degenerative diseases in brain and that information about these brain diseases may be directly applied to explain these retinal diseases. Here we collectively examine this view by revealing three basic characteristics of tau in the rod outer segment (ROS) of bovine retinal photoreceptors, i.e., its isoforms, its phosphorylation mode and its interaction with microtubules, and by comparing them with those of brain tau. We find that ROS contains at least four isoforms: three are identical to those in brain and one is unique in ROS. All ROS isoforms, like brain isoforms, are modified with multiple phosphate molecules; however, ROS isoforms show their own specific phosphorylation pattern, and these phosphorylation patterns appear not to be identical to those of brain tau. Interestingly, some ROS isoforms, under the normal conditions, are phosphorylated at the sites identical to those in Alzheimer's patient isoforms. Surprisingly, a large portion of ROS isoforms tightly associates with a membranous component(s) other than microtubules, and this association is independent of their phosphorylation states. These observations strongly suggest that tau plays various roles in ROS and that some of these functions may not be comparable to those of brain tau. We believe that knowledge about tau in the entire retinal network and/or its individual cells are also essential for elucidation of tau-mediated retinal diseases, if any.


Assuntos
Encéfalo/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Proteínas tau/metabolismo , Animais , Bovinos , Eletroforese em Gel Bidimensional , Fosforilação , Isoformas de Proteínas/metabolismo
16.
Microscopy (Oxf) ; 62(1): 205-15, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23329854

RESUMO

Environmental transmission electron microscopy and ultra-high resolution electron microscopic observation using aberration correctors have recently emerged as topics of great interest. The former method is an extension of the so-called in situ electron microscopy that has been performed since the 1970s. Current research in this area has been focusing on dynamic observation with atomic resolution under gaseous atmospheres and in liquids. Since 2007, Nagoya University has been developing a new 1-MV high voltage (scanning) transmission electron microscope that can be used to observe nanomaterials under conditions that include the presence of gases, liquids and illuminating lights, and it can be also used to perform mechanical operations to nanometre-sized areas as well as electron tomography and elemental analysis by electron energy loss spectroscopy. The new instrument has been used to image and analyse various types of samples including biological ones.


Assuntos
Microscopia Eletrônica de Transmissão/instrumentação , Microscopia Eletrônica de Transmissão/métodos , Elétrons , Desenho de Equipamento , Imageamento Tridimensional , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/ultraestrutura , Espectroscopia de Perda de Energia de Elétrons/métodos
17.
Microscopy (Oxf) ; 62(3): 341-52, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23204307

RESUMO

When considering drug delivery, the amount of drug that can be carried at a particular time and how the drug is incorporated efficiently into cells are important parameters. Transferrin (Tf)-conjugated nanocarriers have been used for the targeted delivery of drugs to cancer cells due to the availability of receptor-mediated clathrin-dependent endocytosis. In general, however, endocytosis seems to differ according to the size and shape of carriers. Large substances are generally internalized into cells by phagocytosis. We studied the internalization mechanism of Tf-conjugated nanoparticles (diameter, 522 nm). Tf-conjugated polystyrene particles were incorporated into cells by receptor-mediated endocytosis with large clathrin-coated vesicles even though their diameter was >500 nm and despite that fact that clathrin-coated vesicles have a diameter of ≈100 nm. This finding suggests that signals for internalization generated by stimulated Tf receptors (TfRs) activate clathrin-mediated endocytosis preferentially. Whether these larger particles could deliver drugs more efficiently than smaller particles was then examined. The toxicity of larger Tf-conjugated biodegradable nanoparticles (poly(lactic-co-glycolic acid)) encapsulating doxorubicin (diameter, 216 ± 38 nm) was appreciably dependent on the number of Tf molecules conjugated on a particle and the number of TfRs expressed on the cell membrane. Larger Tf-conjugated particles delivered drugs to cancer cells expressing many TfRs more selectively than their smaller counterparts (diameter, 56 ± 9 nm) if they were decorated with an appropriate number of Tf molecules.


Assuntos
Doxorrubicina/administração & dosagem , Portadores de Fármacos , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Vesículas Revestidas por Clatrina/metabolismo , Doxorrubicina/metabolismo , Endocitose , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Láctico , Nanopartículas , Tamanho da Partícula , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Transferrina/metabolismo
18.
Biochem Biophys Res Commun ; 428(1): 173-8, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23068101

RESUMO

Actomyosin filament assembly is a critical step in tumor cell migration. We previously found that myosin binding protein H (MYBPH) is directly transactivated by the TTF-1 lineage-survival oncogene in lung adenocarcinomas and inhibits phosphorylation of the myosin regulatory light chain (RLC) of non-muscle myosin IIA (NM IIA) via direct interaction with Rho kinase 1 (ROCK1). Here, we report that MYBPH also directly interacts with an additional molecule, non-muscle myosin heavy chain IIA (NMHC IIA), which was found to occur between MYBPH and the rod portion of NMHC IIA. MYBPH inhibited NMHC IIA assembly and reduced cell motility. Conversely, siMYBPH-induced increased motility was partially, yet significantly, suppressed by blebbistatin, a non-muscle myosin II inhibitor, while more profound effects were attained by combined treatment with siROCK1 and blebbistatin. Electron microscopy observations showed well-ordered paracrystals of NMHC IIA reflecting an assembled state, which were significantly less frequently observed in the presence of MYBPH. Furthermore, an in vitro sedimentation assay showed that a greater amount of NMHC IIA was in an unassembled state in the presence of MYBPH. Interestingly, treatment with a ROCK inhibitor that impairs transition of NM IIA from an assembly-incompetent to assembly-competent state reduced the interaction between MYBPH and NMHC IIA, suggesting that MYBPH has higher affinity to assembly-competent NM IIA. These results suggest that MYBPH inhibits RLC and NMHC IIA, independent components of NM IIA, and negatively regulates actomyosin organization at 2 distinct steps, resulting in firm inhibition of NM IIA assembly.


Assuntos
Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIA/antagonistas & inibidores , Actomiosina/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , RNA Interferente Pequeno/genética , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética
19.
J Electron Microsc (Tokyo) ; 61(5): 321-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22872282

RESUMO

Atomic force microscopy (AFM) combined with unroofing techniques enabled clear imaging of the intracellular cytoskeleton and the cytoplasmic surface of the cell membrane under aqueous condition. Many actin filaments were found to form a complex meshwork on the cytoplasmic surface of the membrane, as observed in freeze-etching electron microscopy. Characteristic periodic striations of about 5 nm formed by the assembly of G-actin were detected along actin filaments at higher magnification. Actin filaments aggregated and dispersed at several points, thereby dividing the cytoplasmic surface of the membrane into several large domains. Microtubules were also easily detected and were often tethered to the membrane surface by fine filaments. Furthermore, clathrin coats on the membrane were clearly visualized for the first time in water by AFM. Although the resolution of these images is lower than electron micrographs of freeze-etched samples processed similarly, the measurement capabilities of the AFM in a more biologically relevant conditions demonstrate that it is an important tool for imaging intracellular structures and cell surfaces in the native, aqueous state.


Assuntos
Citoplasma/ultraestrutura , Citoesqueleto/ultraestrutura , Microscopia de Força Atômica/métodos , Citoesqueleto de Actina , Actinas/ultraestrutura , Animais , Linhagem Celular , Membrana Celular/ultraestrutura , Técnica de Congelamento e Réplica/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica/métodos , Ratos , Propriedades de Superfície , Água/metabolismo
20.
Bioorg Med Chem Lett ; 22(4): 1731-3, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22248855

RESUMO

We examined alterations of lipid constituents induced by hybrid liposomes (HLs) in cancer cells. As early as 1h after HL treatment, amounts of the raft/caveolae lipids sphingomyelin, ceramide, and ether-type PC were altered. In addition, the structures of caveolae on the cytoplasmic surface of the cell membrane were significantly changed. Our results suggest that alterations of lipid composition in caveolae mediate HL signaling for apoptosis.


Assuntos
Cavéolas/química , Lipídeos/química , Lipossomos/química , Neoplasias/química , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Modelos Biológicos , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA