Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 979
Filtrar
1.
Cornea ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39383473

RESUMO

PURPOSE: The human cornea is essential for vision, providing structural integrity and refractive power to the eye. Recent advancements have deepened our understanding of the corneal molecular composition, yet the role of intrinsically disordered proteins within the cornea is unexplored. METHODS: We analyzed 3,250 corneal proteins identified by Dyrlund et al, focusing on the epithelium, stroma, and endothelium layers. We performed a bioinformatics analysis to characterize the amino acid composition, the propensity for intrinsic protein disorder, and the distribution of protein types in 3 corneal layer proteome. RESULTS: Our study demonstrates that each corneal layer exhibited unique patterns in amino acid composition related to protein disorder. Order-promoting amino acids were generally depleted except for leucine, whereas disorder-promoting amino acids like arginine and glutamic acid were enriched across all layers. Significant variations were observed in the levels of intrinsic disorder among the different corneal layers, with substantial proportions of highly disordered proteins present in each. Analysis of protein class type in each layers revealed that no significant differences were detected in the distribution of protein classifications across the layers, suggesting a consistent population of the protein types across all corneal layers. CONCLUSIONS: Our findings reveal a sophisticated landscape of protein structures where intrinsic disorder varies across layers, suggesting an adaptation of the corneal proteome to the unique physiological demands of each layer. These structural variations may reflect the intricate requirements for corneal transparency, biomechanical stability, and environmental responsiveness.

2.
Sci Rep ; 14(1): 22910, 2024 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358423

RESUMO

Studies of proteins, found in one of the most stress-resistant animals tardigrade Ramazzottius varieornatus, aim to reveal molecular principles of extreme tolerance to various types of stress and developing applications based on them for medicine, biotechnology, pharmacy, and space research. Tardigrade DNA/RNA-binding damage suppressor protein (Dsup) reduces DNA damage caused by reactive oxygen spices (ROS) produced upon irradiation and oxidative stresses in Dsup-expressing transgenic organisms. This work is focused on the determination of structural features of Dsup protein and Dsup-DNA complex, which refines details of protective mechanism. For the first time, intrinsically disordered nature of Dsup protein with highly flexible structure was experimentally proven and characterized by the combination of small angle X-ray scattering (SAXS) technique, circular dichroism spectroscopy, and computational methods. Low resolution models of Dsup protein and an ensemble of conformations were presented. In addition, we have shown that Dsup forms fuzzy complex with DNA.


Assuntos
Proteínas de Artrópodes , Tardígrados , Animais , Dicroísmo Circular , DNA/metabolismo , DNA/química , Dano ao DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo , Tardígrados/metabolismo , Difração de Raios X , Proteínas de Artrópodes/metabolismo
3.
Int J Biol Macromol ; 279(Pt 2): 135232, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39218177

RESUMO

Polyphenols are abundant natural plant micronutrients that commonly contribute to human health due to their anti-inflammatory, antioxidant, antiviral, anti-carcinogenic, anti-aging, anti-allergic, and other biological activities. Their therapeutic benefits mainly depend on the structure, stability, chemical interactions, and absorption, which ultimately affect the bioavailability of these compounds. The bioactivity of polyphenols is evaluated by in vitro and in vivo studies, sometimes yielding inconsistent results due to numerous differences between used models. Among the main differences is the production of reactive oxygen species (ROS) in cultured cell models, potentially leading to misinterpretation of the effects of polyphenolic compounds. Little attention is paid to the polyphenol stability in cell culture medium and the potential generation of artifacts due to their chemical instability. Stability tests of polyphenols are strongly advised to be performed in parallel with cell culture, to help avoid misleading conclusions. This review highlights the existing challenges with cell-based research, focusing on polyphenols' stability in the cell culture media. We also emphasize that new methods analyzing the molecular interactions of compounds with cell culture media supplements are essential to provide a comprehensive understanding of the polyphenols in in vitro models.


Assuntos
Disponibilidade Biológica , Meios de Cultura , Polifenóis , Polifenóis/química , Polifenóis/farmacologia , Humanos , Meios de Cultura/química , Animais , Estabilidade de Medicamentos , Espécies Reativas de Oxigênio/metabolismo
4.
Cell Signal ; 124: 111434, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326690

RESUMO

In a thorough review of the literature, the complex roles of PRAME (preferentially expressed Antigen of Melanoma) and BAP1 (BRCA1-associated protein 1) have been investigated in uveal melanoma (UM) and cutaneous melanoma. High PRAME expression in UM is associated with poor outcomes and correlated with extraocular extension and chromosome 8q alterations. BAP1 mutations in the UM indicate genomic instability and a poor prognosis. Combining PRAME and BAP1 immunohistochemical staining facilitates effective risk stratification. Mechanistically, both genes are associated with genomic instability, making them promising targets for cancer immunotherapy. Hypomethylation of PRAME, specifically in its promoter regions, is critical for UM progression and contributes to epigenetic reprogramming. Additionally, miR-211 regulation is crucial in melanoma and has therapeutic potential. The way PRAME changes signaling pathways provides clues about the cause of cancer due to genomic instability related to modifications in DNA repair. Inhibition of poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in cells expressing PRAME could lead to potential therapeutic applications. Pathway enrichment analysis underscores the significance of PRAME and BAP1 in melanoma pathogenesis.

5.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273601

RESUMO

The partition behavior of single and double-point mutants of bacteriophage T4 lysozyme (T4 lysozyme) and staphylococcal nuclease A was examined in different aqueous two-phase systems (ATPSs) and studied by Solvent Interaction Analysis (SIA). Additionally, the solvent accessible surface area (SASA) of modeled mutants of both proteins was calculated. The in silico calculations and the in vitro analyses of the staphylococcal nuclease and T4 lysozyme mutants correlate, indicating that the partition analysis in ATPSs provides a valid descriptor (SIA signature) covering various protein features, such as structure, structural dynamics, and conformational stability.


Assuntos
Bacteriófago T4 , Nuclease do Micrococo , Muramidase , Mutação Puntual , Solventes , Termodinâmica , Muramidase/química , Muramidase/genética , Muramidase/metabolismo , Solventes/química , Bacteriófago T4/genética , Bacteriófago T4/enzimologia , Nuclease do Micrococo/química , Nuclease do Micrococo/metabolismo , Nuclease do Micrococo/genética , Simulação por Computador , Modelos Moleculares , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
An Acad Bras Cienc ; 96(suppl 1): e20230616, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39292103

RESUMO

Cardiovascular diseases, resulting from the deposition of clots in blood vessels, are the leading cause of death worldwide. Fibrinolytic enzymatic activity can catalyze blood clot degradation. Findings show that 36 fungal isolates recovered from Caatinga soils have the potential to produce fibrinolytic protease under submerged conditions. About 58 % of the isolates displayed fibrinolytic activity above 100 U/mL, with Mucor subtilissimus UCP 1262 being the most active. The protease was biochemically and biophysically characterized, showing that the enzyme had a high affinity for SAApNA substrate and was significantly inhibited by fluoride methyl phenyl sulfonyl-C7H7FO2S, suggesting that it is a chymotrypsin-like serine protease. The highest enzyme activity was detected at pH 5.0 and 28 °C. This fibrinolytic protease's far-UV circular dichroism (CD) showed that its secondary structure was primarily α-helical. The purified fibrinolytic enzyme may represent a novel therapeutic agent for treating thrombosis. At temperatures above 65 °C, the enzyme lost all its secondary structure. Its melting temperature was 58.1 °C, the denaturation enthalpy 85.1 kcal/mol, and the denaturation entropy 0.26 kcal/K∙mol.


Assuntos
Mucor , Mucor/enzimologia , Concentração de Íons de Hidrogênio , Dicroísmo Circular , Microbiologia do Solo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/isolamento & purificação , Peptídeo Hidrolases/metabolismo , Temperatura , Fibrinolíticos/química , Fibrinólise
7.
Int J Biol Macromol ; 279(Pt 2): 135201, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39216563

RESUMO

BACKGROUND: The nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV-2. Viral RNA and this protein are bound by electrostatic forces, forming cytoplasmic helical structures known as nucleocapsids. Subsequently, these nucleocapsids interact with the membrane (M) protein, facilitating virus budding into early secretory compartments. SCOPE OF REVIEW: Exploring the role of the N protein in the SARS-CoV-2 life cycle, pathogenesis, post-sequelae consequences, and interaction with host immunity has enhanced our understanding of its function and potential strategies for preventing SARS-CoV-2 infection. MAJOR CONCLUSION: This review provides an overview of the N protein's involvement in SARS-CoV-2 infectivity, highlighting its crucial role in the virus-host protein interaction and immune system modulation, which in turn influences viral spread. GENERAL SIGNIFICANCE: Understanding these aspects identifies the N protein as a promising target for developing effective antiviral treatments and vaccines against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Humanos , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/química , Vacinas contra COVID-19/imunologia , Desenvolvimento de Vacinas , Fosfoproteínas/metabolismo , Fosfoproteínas/imunologia , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/imunologia , Proteínas do Nucleocapsídeo/química
8.
Molecules ; 29(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124857

RESUMO

The superfamily of acid proteases has two catalytic aspartates for proteolysis of their peptide substrates. Here, we show a minimal structural scaffold, the structural catalytic core (SCC), which is conserved within each family of acid proteases, but varies between families, and thus can serve as a structural marker of four individual protease families. The SCC is a dimer of several structural blocks, such as the DD-link, D-loop, and G-loop, around two catalytic aspartates in each protease subunit or an individual chain. A dimer made of two (D-loop + DD-link) structural elements makes a DD-zone, and the D-loop + G-loop combination makes a psi-loop. These structural markers are useful for protein comparison, structure identification, protein family separation, and protein engineering.


Assuntos
Domínio Catalítico , Modelos Moleculares , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Conformação Proteica
9.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125972

RESUMO

In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, ß-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human ß- and γ- synucleins and revealed that, relative to the ß- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.


Assuntos
alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Sequência de Aminoácidos , beta-Sinucleína/metabolismo , beta-Sinucleína/genética , beta-Sinucleína/química , gama-Sinucleína/metabolismo , gama-Sinucleína/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Sinucleínas/metabolismo , Sinucleínas/genética , Modelos Moleculares , Mutação
10.
Artigo em Inglês | MEDLINE | ID: mdl-39179487

RESUMO

Long COVID-19 affects a significant percentage of patients and is characterized by a wide range of symptoms, including weariness and mental fog as well as emotional symptoms like worry and sadness. COVID-19 is closely linked to the autoimmune disorders that are becoming more prevalent worldwide and are linked to immune system hyperactivation, neutrophil extracellular trap (NET) development, and molecular mimicry pathways. Long-term COVID-related autoimmune responses include a watchful immune system referring to the ability of immune system to constantly monitor the body for signs of infection, disease, or abnormal cells; altered innate and adaptive immune cells, autoantigens secreted by living or dead neutrophils, and high concentrations of autoantibodies directed against different proteins. The microbiome, which consists of billions of bacteria living in the human body, is essential for controlling immune responses and supporting overall health. The microbiome can affect the course of long COVID-associated autoimmunity, including the degree of illness, the rate of recovery, and the onset of autoimmune reactions. Although the precise role of the microbiome in long COVID autoimmunity is still being investigated, new studies indicate that probiotics, prebiotics, and dietary changes-interventions that target the microbiome-may be able to reduce autoimmune reactions and enhance long-term outcomes for COVID-19 survivors. More research is required to precisely understand how the microbiome affects COVID-19-related autoimmunity and to create tailored treatment plans.

11.
Cell Biochem Biophys ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117985

RESUMO

This study aims to compare the levels of intrinsic protein disorder within the human lens and zonule proteomes and investigate the role of aging as a potential influencing factor on disorder levels. A cross-sectional proteomic analysis was employed, utilizing a dataset of 1466 proteins derived from the lens and zonule proteomes previously published by Wang et al. and De Maria et al. Bioinformatics tools, including a composition profiler and a rapid intrinsic disorder analysis online tool, were used to conduct a comparative analysis of protein disorder. Statistical tests such as ANOVA, Tukey's HSD, and chi-squared tests were applied to evaluate differences between groups. The study revealed distinct amino acid compositions for each proteome, showing a direct correlation between aging and increased protein disorder in the zonular proteomes, whereas the lens proteomes exhibited the opposite trend. Findings suggest that age-related changes in intrinsic protein disorder within the lens and zonule proteomes may be linked to structural transformations in these tissues. Understanding how protein disorder evolves with age could enhance knowledge of the molecular basis for age-related conditions such as cataracts and pseudoexfoliation, potentially leading to better therapeutic strategies.

12.
Biomolecules ; 14(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062549

RESUMO

Long COVID, a name often given to the persistent symptoms following acute SARS-CoV-2 infection, poses a multifaceted challenge for health. This review explores the intrinsic relationship between comorbidities and autoimmune responses in shaping the trajectory of long COVID. Autoantibodies have emerged as significant players in COVID-19 pathophysiology, with implications for disease severity and progression. Studies show immune dysregulation persisting months after infection, marked by activated innate immune cells and high cytokine levels. The presence of autoantibodies against various autoantigens suggests their potential as comorbid factors in long COVID. Additionally, the formation of immune complexes may lead to severe disease progression, highlighting the urgency for early detection and intervention. Furthermore, long COVID is highly linked to cardiovascular complications and neurological symptoms, posing challenges in diagnosis and management. Multidisciplinary approaches, including vaccination, tailored rehabilitation, and pharmacological interventions, are used for mitigating long COVID's burden. However, numerous challenges persist, from evolving diagnostic criteria to addressing the psychosocial impact and predicting disease outcomes. Leveraging AI-based applications holds promise in enhancing patient management and improving our understanding of long COVID. As research continues to unfold, unravelling the complexities of long COVID remains paramount for effective intervention and patient care.


Assuntos
COVID-19 , Comorbidade , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Autoanticorpos/imunologia
13.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062780

RESUMO

The relationship between pangolin-CoV and SARS-CoV-2 has been a subject of debate. Further evidence of a special relationship between the two viruses can be found by the fact that all known COVID-19 viruses have an abnormally hard outer shell (low M disorder, i.e., low content of intrinsically disordered residues in the membrane (M) protein) that so far has been found in CoVs associated with burrowing animals, such as rabbits and pangolins, in which transmission involves virus remaining in buried feces for a long time. While a hard outer shell is necessary for viral survival, a harder inner shell could also help. For this reason, the N disorder range of pangolin-CoVs, not bat-CoVs, more closely matches that of SARS-CoV-2, especially when Omicron is included. The low N disorder (i.e., low content of intrinsically disordered residues in the nucleocapsid (N) protein), first observed in pangolin-CoV-2017 and later in Omicron, is associated with attenuation according to the Shell-Disorder Model. Our experimental study revealed that pangolin-CoV-2017 and SARS-CoV-2 Omicron (XBB.1.16 subvariant) show similar attenuations with respect to viral growth and plaque formation. Subtle differences have been observed that are consistent with disorder-centric computational analysis.


Assuntos
COVID-19 , Pangolins , SARS-CoV-2 , SARS-CoV-2/patogenicidade , Animais , COVID-19/virologia , COVID-19/transmissão , Pangolins/virologia , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Biologia Computacional/métodos , Fosfoproteínas
14.
Methods ; 229: 147-155, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002735

RESUMO

This article reviews tried-and-tested methodologies that have been employed in the first studies on phase separating properties of structural, RNA-binding and catalytic proteins of HIV-1. These are described here to stimulate interest for any who may want to initiate similar studies on virus-mediated liquid-liquid phase separation. Such studies serve to better understand the life cycle and pathogenesis of viruses and open the door to new therapeutics.


Assuntos
HIV-1 , Replicação Viral , Humanos , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Separação de Fases , RNA Viral/genética
15.
Biochemistry (Mosc) ; 89(6): 1079-1093, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38981702

RESUMO

The work presents results of the in vitro and in silico study of formation of amyloid-like structures under harsh denaturing conditions by non-specific OmpF porin of Yersinia pseudotuberculosis (YpOmpF), a membrane protein with ß-barrel conformation. It has been shown that in order to obtain amyloid-like porin aggregates, preliminary destabilization of its structure in a buffer solution with acidic pH at elevated temperature followed by long-term incubation at room temperature is necessary. After heating at 95°C in a solution with pH 4.5, significant conformational rearrangements are observed in the porin molecule at the level of tertiary and secondary structure of the protein, which are accompanied by the increase in the content of total ß-structure and sharp decrease in the value of characteristic viscosity of the protein solution. Subsequent long-term exposure of the resulting unstable intermediate YpOmpF at room temperature leads to formation of porin aggregates of various shapes and sizes that bind thioflavin T, a specific fluorescent dye for the detection of amyloid-like protein structures. Compared to the initial protein, early intermediates of the amyloidogenic porin pathway, oligomers, have been shown to have increased toxicity to the Neuro-2aCCL-131™ mouse neuroblastoma cells. The results of computer modeling and analysis of the changes in intrinsic fluorescence during protein aggregation suggest that during formation of amyloid-like aggregates, changes in the structure of YpOmpF affect not only the areas with an internally disordered structure corresponding to the external loops of the porin, but also main framework of the molecule, which has a rigid spatial structure inherent to ß-barrel.


Assuntos
Porinas , Yersinia pseudotuberculosis , Porinas/química , Porinas/metabolismo , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/química , Animais , Camundongos , Amiloide/metabolismo , Amiloide/química , Estrutura Secundária de Proteína , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Conformação Proteica
16.
Artigo em Inglês | MEDLINE | ID: mdl-38982922

RESUMO

The phenomenon of Liquid-Liquid Phase Separation (LLPS) serves as a vital mechanism for the spatial organization of biomolecules, significantly influencing the elementary processes within the cellular milieu. Intrinsically disordered proteins, or proteins endowed with intrinsically disordered regions, are pivotal in driving this biophysical process, thereby dictating the formation of non-membranous cellular compartments. Compelling evidence has linked aberrations in LLPS to the pathogenesis of various neurodegenerative diseases, underscored by the disordered proteins' proclivity to form pathological aggregates. This study meticulously evaluates the arsenal of contemporary experimental and computational methodologies dedicated to the examination of intrinsically disordered proteins within the context of LLPS. Through a discerning discourse on the capabilities and constraints of these investigative techniques, we unravel the intricate contributions of these ubiquitous proteins to LLPS and neurodegeneration. Moreover, we project a future trajectory for the field, contemplating on innovative research tools and their potential to elucidate the underlying mechanisms of LLPS, with the ultimate goal of fostering new therapeutic avenues for combating neurodegenerative disorders.

17.
Protein J ; 43(4): 675-682, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824467

RESUMO

Actin is present in the cytoplasm and nucleus of every eukaryotic cell. In the cytoplasm, framework and motor functions of actin are associated with its ability to polymerize to form F-actin. In the nucleus, globular actin plays a significant functional role. For a globular protein, actin has a uniquely large number of proteins with which it interacts. Bioinformatics analysis of the actin interactome showed that only a part of actin-binding proteins are both cytoplasmic and nuclear. There are proteins that interact only with cytoplasmic, or only with nuclear actin. The first pool includes proteins associated with the formation, regulation, and functioning of the actin cytoskeleton predominate, while nuclear actin-binding proteins are involved in the majority of key nuclear processes, from regulation of transcription to DNA damage response. Bioinformatics analysis of the structure of actin-binding proteins showed that these are mainly intrinsically disordered proteins, many of which are part of membrane-less organelles. Interestingly, although the number of intrinsically disordered actin-binding proteins in the nucleus is greater than in the cytoplasm, the drivers for the formation of the membrane-less organelles in the cytoplasm are significantly (four times) greater than in the nucleus.


Assuntos
Actinas , Núcleo Celular , Biologia Computacional , Citoplasma , Proteínas dos Microfilamentos , Biologia Computacional/métodos , Actinas/metabolismo , Actinas/química , Actinas/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Ligação Proteica
18.
Viruses ; 16(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38932209

RESUMO

A proteomics analysis of purified rabies virus (RABV) revealed 47 entrapped host proteins within the viral particles. Out of these, 11 proteins were highly disordered. Our study was particularly focused on five of the RABV-entrapped mouse proteins with the highest levels of disorder: Neuromodulin, Chmp4b, DnaJB6, Vps37B, and Wasl. We extensively utilized bioinformatics tools, such as FuzDrop, D2P2, UniProt, RIDAO, STRING, AlphaFold, and ELM, for a comprehensive analysis of the intrinsic disorder propensity of these proteins. Our analysis suggested that these disordered host proteins might play a significant role in facilitating the rabies virus pathogenicity, immune system evasion, and the development of antiviral drug resistance. Our study highlighted the complex interaction of the virus with its host, with a focus on how the intrinsic disorder can play a crucial role in virus pathogenic processes, and suggested that these intrinsically disordered proteins (IDPs) and disorder-related host interactions can also be a potential target for therapeutic strategies.


Assuntos
Proteínas Intrinsicamente Desordenadas , Vírus da Raiva , Vírion , Vírus da Raiva/fisiologia , Animais , Camundongos , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Vírion/metabolismo , Proteômica , Interações Hospedeiro-Patógeno , Raiva/virologia , Biologia Computacional/métodos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/química
19.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928046

RESUMO

This review covers the analytical applications of protein partitioning in aqueous two-phase systems (ATPSs). We review the advancements in the analytical application of protein partitioning in ATPSs that have been achieved over the last two decades. Multiple examples of different applications, such as the quality control of recombinant proteins, analysis of protein misfolding, characterization of structural changes as small as a single-point mutation, conformational changes upon binding of different ligands, detection of protein-protein interactions, and analysis of structurally different isoforms of a protein are presented. The new approach to discovering new drugs for a known target (e.g., a receptor) is described when one or more previous drugs are already available with well-characterized biological efficacy profiles.


Assuntos
Proteínas , Água , Água/química , Proteínas/química , Proteínas/metabolismo , Dobramento de Proteína , Humanos , Ligação Proteica , Conformação Proteica , Ligantes , Proteínas Recombinantes/química
20.
Cancers (Basel) ; 16(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893150

RESUMO

Immunotherapy is a rapidly advancing field of research in the treatment of conditions such as cancer and autoimmunity. Nanomaterials can be designed for immune system manipulation, with precise targeted delivery and improved immunomodulatory efficacy. Here, we elaborate on various strategies using nanomaterials, including liposomes, polymers, and inorganic NPs, and discuss their detailed design intricacies, mechanisms, and applications, including the current regulatory issues. This type of nanomaterial design for targeting specific immune cells or tissues and controlling release kinetics could push current technological frontiers and provide new and innovative solutions for immune-related disorders and diseases without off-target effects. These materials enable targeted interactions with immune cells, thereby enhancing the effectiveness of checkpoint inhibitors, cancer vaccines, and adoptive cell therapies. Moreover, they allow for fine-tuning of immune responses while minimizing side effects. At the intersection of nanotechnology and immunology, nanomaterial-based platforms have immense potential to revolutionize patient-centered immunotherapy and reshape disease management. By prioritizing safety, customization, and compliance with regulatory standards, these systems can make significant contributions to precision medicine, thereby significantly impacting the healthcare landscape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA