Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 902, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326347

RESUMO

GPR34 is a recently identified G-protein coupled receptor, which has an immunomodulatory role and recognizes lysophosphatidylserine (LysoPS) as a putative ligand. Here, we report cryo-electron microscopy structures of human GPR34-Gi complex bound with one of two ligands bound: either the LysoPS analogue S3E-LysoPS, or M1, a derivative of S3E-LysoPS in which oleic acid is substituted with a metabolically stable aromatic fatty acid surrogate. The ligand-binding pocket is laterally open toward the membrane, allowing lateral entry of lipidic agonists into the cavity. The amine and carboxylate groups of the serine moiety are recognized by the charged residue cluster. The acyl chain of S3E-LysoPS is bent and fits into the L-shaped hydrophobic pocket in TM4-5 gap, and the aromatic fatty acid surrogate of M1 fits more appropriately. Molecular dynamics simulations further account for the LysoPS-regioselectivity of GPR34. Thus, using a series of structural and physiological experiments, we provide evidence that chemically unstable 2-acyl LysoPS is the physiological ligand for GPR34. Overall, we anticipate the present structures will pave the way for development of novel anticancer drugs that specifically target GPR34.


Assuntos
Ácidos Graxos , Lisofosfolipídeos , Humanos , Microscopia Crioeletrônica , Ácidos Graxos/metabolismo , Ligantes , Lisofosfolipídeos/metabolismo , Receptores de Lisofosfolipídeos/agonistas , Receptores de Lisofosfolipídeos/metabolismo
2.
Chem Pharm Bull (Tokyo) ; 71(7): 584-615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394607

RESUMO

Our group has reported various derivatives of lysophosphatidylserine (LysoPS) as potent and subtype-selective agonists for G-protein-coupled receptors (GPCRs). However, the ester linkage between the glycerol moiety and fatty acid or fatty acid surrogate is present in all of them. In order to develop these LysoPS analogs as drug candidates, appropriate pharmacokinetic consideration is essential. Here, we found that the ester bond of LysoPS is highly susceptible to metabolic degradation in mouse blood. Accordingly, we examined isosteric replacement of the ester linkage with heteroaromatic rings. The resulting compounds showed excellent retention of potency and receptor subtype selectivity, as well as increased metabolic stability in vitro.


Assuntos
Lisofosfolipídeos , Receptores Acoplados a Proteínas G , Camundongos , Animais , Receptores de Lisofosfolipídeos/agonistas , Receptores de Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Ácidos Graxos/metabolismo , Glicerol/química
3.
Immunol Rev ; 317(1): 20-29, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37036835

RESUMO

In addition to direct activation by pathogens and antigens, immune cell functions are further modulated by factors in their environment. Recent studies have revealed that lysophospholipids (LPL) derived from membrane glycerophospholipids are such environmental factors. They are produced by the action of various phospholipases and modulate immune responses positively or negatively via G-protein-coupled receptor-type receptors. These include lysophosphatidic acid, lysophosphatidylserine (LysoPS), and lysophosphatidylinositol. Here, we summarize what is known about the synthetic pathways, receptors, and immunomodulatory functions of these LPLs. Particular focus is given to LysoPS, which have recently been identified, and recent findings on their immunomodulatory actions are presented.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Lisofosfolipídeos/metabolismo
4.
Eur J Med Chem ; 252: 115271, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965226

RESUMO

Lysophosphatidylserine (LysoPS) is an endogenous pan-agonist of three G-protein coupled receptors (GPCRs): LPS1/GPR34, LPS2/P2Y10, and LPS3/GPR174, and we previously reported a series of LysoPS-based agonists of these receptors. Interestingly, we found that LPS1 agonist activity was very sensitive to structural change at the hydrophobic fatty acid moiety, whereas LPS2 agonist activity was not. Here, to probe the molecular basis of LPS2 agonist binding, we developed a new class of hydrophobic fatty acid surrogates having a biphenyl-ether scaffold. The LPS2 agonist activity of these compounds proved sensitive to molecular modification of the hydrophobic skeleton. Thus, we next constructed an LPS2 model by homology modeling and docking/molecular dynamics (MD) simulation, and validated it by means of SAR studies together with point mutations of selected receptor amino-acid residues. The putative ligand-binding site of LPS2 is Γ-shaped, with a hydrophilic site horizontally embedded in the receptor transmembrane helix bundles and a perpendicular hydrophobic groove adjoining transmembrane domains 4 and 5 that is open to the membrane bilayer. The binding poses of LPS2 agonists to this site are consistent with easy incorporation of various kinds of fatty acid surrogates. Structural development based on this model afforded a series of potent and selective LPS2 full agonists, which showed enhanced in vitro actin stress fiber formation effect.


Assuntos
Lipopolissacarídeos , Simulação de Dinâmica Molecular , Receptores de Lisofosfolipídeos/agonistas , Receptores de Lisofosfolipídeos/genética , Receptores de Lisofosfolipídeos/metabolismo , Lipopolissacarídeos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Sítios de Ligação , Ácidos Graxos , Ligantes
5.
PLoS One ; 18(1): e0280448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36668668

RESUMO

Transient receptor potential (TRP) channels are activated by various extracellular and intracellular stimuli and are involved in many physiological events. Because compounds that act on TRP channels are potential candidates for therapeutic agents, a simple method for evaluating TRP channel activation is needed. In this study, we demonstrated that a transforming growth factor alpha (TGFα) shedding assay, previously developed for detecting G-protein-coupled receptor (GPCR) activation, can also detect TRP channel activation. This assay is a low-cost, easily accessible method that requires only an absorbance microplate reader. Mechanistically, TRP-channel-triggered TGFα shedding is achieved by both of a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and 17 (ADAM17), whereas the GPCR-induced TGFα shedding response depends solely on ADAM17. This difference may be the result of qualitative or quantitative differences in intracellular Ca2+ kinetics between TRP channels and GPCRs. Use of epidermal growth factor (EGF) and betacellulin (BTC), substrates of ADAM10, improved the specificity of the shedding assay by reducing background responses mediated by endogenously expressed GPCRs. This assay for TRP channel measurement will not only facilitate the high-throughput screening of TRP channel ligands but also contribute to understanding the roles played by TRP channels as regulators of membrane protein ectodomain shedding.


Assuntos
Proteínas ADAM , Fator de Crescimento Transformador alfa , Proteínas ADAM/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Secretases da Proteína Precursora do Amiloide , Proteína ADAM17 , Fator de Crescimento Epidérmico/metabolismo , Proteína ADAM10/metabolismo , Receptores ErbB/metabolismo , Ligantes
6.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36480287

RESUMO

Medium-chain triglycerides (MCTs), which consist of medium-chain fatty acids (MCFAs), are unique forms of dietary fat with various health benefits. G protein-coupled 84 (GPR84) acts as a receptor for MCFAs (especially C10:0 and C12:0); however, GPR84 is still considered an orphan receptor, and the nutritional signaling of endogenous and dietary MCFAs via GPR84 remains unclear. Here, we showed that endogenous MCFA-mediated GPR84 signaling protected hepatic functions from diet-induced lipotoxicity. Under high-fat diet (HFD) conditions, GPR84-deficient mice exhibited nonalcoholic steatohepatitis (NASH) and the progression of hepatic fibrosis but not steatosis. With markedly increased hepatic MCFA levels under HFD, GPR84 suppressed lipotoxicity-induced macrophage overactivation. Thus, GPR84 is an immunomodulating receptor that suppresses excessive dietary fat intake-induced toxicity by sensing increases in MCFAs. Additionally, administering MCTs, MCFAs (C10:0 or C12:0, but not C8:0), or GPR84 agonists effectively improved NASH in mouse models. Therefore, exogenous GPR84 stimulation is a potential strategy for treating NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Receptores Acoplados a Proteínas G , Camundongos , Animais , Receptores Acoplados a Proteínas G/agonistas , Ácidos Graxos , Gorduras na Dieta/farmacologia , Triglicerídeos , Cirrose Hepática
7.
ACS Omega ; 8(51): 49278-49288, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162765

RESUMO

Lysophosphatidic acid (LPA) is a key player in many physiological and pathophysiological processes. The biological activities of LPA are mediated through interactions with-at least-six subtypes of G-protein-coupled receptors (GPCRs) named LPA1-6. Developing a pharmacological tool molecule that activates LPA subtype receptors selectively will allow a better understanding of their specific physiological roles. Here, we designed and synthesized conformationally restricted 25 1-oleoyl LPA analogues MZN-001 to MZN-025 by incorporating its glycerol linker into dihydropyran, tetrahydropyran, and pyrrolidine rings and variating the lipophilic chain. The agonistic activities of these compounds were evaluated using the TGFα shedding assay. Overall, the synthesized analogues exhibited significantly reduced agonistic activities toward LPA1, LPA2, and LPA6, while demonstrating potent activities toward LPA3, LPA4, and LPA5 compared to the parent LPA. Specifically, MZN-010 showed more than 10 times greater potency (EC50 = 4.9 nM) than the standard 1-oleoyl LPA (EC50 = 78 nM) toward LPA5 while exhibiting significantly lower activity on LPA1, LPA2, and LPA6 and comparable potency toward LPA3 and LPA4. Based on the MZN-010 scaffold, we synthesized additional analogues with improved selectivity and potency toward LPA5. Compound MZN-021, which contains a saturated lipophilic chain, exhibited 50 times more potent activity (EC50 = 1.2 nM) than the natural LPA against LPA5 with over a 45-fold higher selectivity when compared to those of other LPA receptors. Thus, MZN-021 was found to be a potent and selective LPA5 agonist. The findings of this study could contribute to broadening the current knowledge about the stereochemical and three-dimensional arrangement of LPA pharmacophore components inside LPA receptors and paving the way toward synthesizing other subtype-selective pharmacological probes.

8.
Cancer Discov ; 12(5): 1336-1355, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35180303

RESUMO

Microbes and their byproducts have been reported to regulate host health and immune functions. Here we demonstrated that microbial exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1 (EPS-R1) induced CCR6+ CD8+ T cells of mice and humans. In mice, ingestion of EPS-R1 augmented antitumor effects of anti-CTLA-4 or anti-PD-1 monoclonal antibody against CCL20-expressing tumors, in which infiltrating CCR6+ CD8+ T cells were increased and produced IFNγ accompanied by a substantial immune response gene expression signature maintaining T-cell functions. Of note, the antitumor adjuvant effect of EPS-R1 was also observed in germ-free mice. Furthermore, the induction of CCR6 expression was mediated through the phosphorylated structure in EPS-R1 and a lysophosphatidic acid receptor on CD8+ T cells. Overall, we find that dietary EPS-R1 consumption induces CCR6+ CD8+ T cells in Peyer's patches, favoring a tumor microenvironment that augments the therapeutic effect of immune-checkpoint blockade depending on CCL20 production by tumors. SIGNIFICANCE: Gut microbiota- and probiotic-derived metabolites are attractive agents to augment the efficacy of immunotherapies. Here we demonstrated that dietary consumption of Lactobacillus-derived exopolysaccharide induced CCR6+ CD8+ T cells in Peyer's patches and improved the tumor microenvironment to augment the therapeutic effects of immune-checkpoint blockade against CCL20-producing tumors. See related commentary by Di Luccia and Colonna, p. 1189. This article is highlighted in the In This Issue feature, p. 1171.


Assuntos
Lactobacillus , Neoplasias , Linfócitos T CD8-Positivos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Lactobacillus/metabolismo , Microambiente Tumoral
9.
Mucosal Immunol ; 15(2): 289-300, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35013573

RESUMO

Dietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body's use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.


Assuntos
Dieta Hiperlipídica , Macrófagos , Tecido Adiposo , Animais , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Macaca fascicularis/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo
10.
Sci Rep ; 11(1): 17360, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462512

RESUMO

Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator that, along with its chemically stabilized analogue 2-carba-cyclic phosphatidic acid (2ccPA), induces various biological activities in vitro and in vivo. Although cPA is similar to lysophosphatidic acid (LPA) in structure and synthetic pathway, some of cPA biological functions apparently differ from those reported for LPA. We previously investigated the pharmacokinetic profile of 2ccPA, which was found to be rapidly degraded, especially in acidic conditions, yielding an unidentified compound. Thus, not only cPA but also its degradation compound may contribute to the biological activity of cPA, at least for 2ccPA. In this study, we determined the structure and examined the biological activities of 2-carba-lysophosphatidic acid (2carbaLPA) as a 2ccPA degradation compound, which is a type of ß-LPA analogue. Similar to LPA and cPA, 2carbaLPA induced the phosphorylation of the extracellular signal-regulated kinase and showed potent agonism for all known LPA receptors (LPA1-6) in the transforming growth factor-α (TGFα) shedding assay, in particular for LPA3 and LPA4. 2carbaLPA inhibited the lysophospholipase D activity of autotaxin (ATX) in vitro similar to other cPA analogues, such as 2ccPA, 3-carba-cPA, and 3-carba-LPA (α-LPA analogue). Our study shows that 2carbaLPA is a novel ß-LPA analogue with high potential for the activation of some LPA receptors and ATX inhibition.


Assuntos
Lisofosfolipídeos/química , Diester Fosfórico Hidrolases/metabolismo , Receptores de Ácidos Lisofosfatídicos/química , Oxirredutases do Álcool/química , Células HEK293 , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Fosforilação , Proteínas Recombinantes/química , Transdução de Sinais , Solventes , Fator de Crescimento Transformador alfa/metabolismo
11.
J Med Chem ; 64(14): 10059-10101, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34233115

RESUMO

Three human G protein-coupled receptors (GPCRs)-GPR34/LPS1, P2Y10/LPS2, and GPR174/LPS3-are activated specifically by lysophosphatidylserine (LysoPS), an endogenous hydrolysis product of a cell membrane component, phosphatidylserine (PS). LysoPS consists of l-serine, glycerol, and fatty acid moieties connected by phosphodiester and ester linkages. We previously generated potent and selective GPCR agonists by modification of the three modules and the ester linkage. Here, we show that a novel modification of the hydrophilic serine moiety, that is, N-acylations of the serine amine, converted a GPR174 agonist to potent GPR174 antagonists. Structural exploration of the amide functionality provided access to a range of activities from agonist to partial agonist to antagonist. The present study would provide a new strategy for the development of lysophospholipid receptor antagonists.


Assuntos
Aminas/farmacologia , Lisofosfolipídeos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Serina/farmacologia , Acilação , Aminas/química , Relação Dose-Resposta a Droga , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lisofosfolipídeos/síntese química , Lisofosfolipídeos/química , Estrutura Molecular , Serina/química , Relação Estrutura-Atividade
12.
J Med Chem ; 63(17): 9990-10029, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787112

RESUMO

Lysophosphatidylserine (LysoPS), an endogenous ligand of G protein-coupled receptors, consists of l-serine, glycerol, and fatty acid moieties connected by phosphodiester and ester linkages, respectively. An ester linkage of phosphatidylserine can be hydrolyzed at the 1-position or at the 2-position to give 2-acyl lysophospholipid or 1-acyl lysophospholipid, respectively. 2-Acyl lysophospholipid is in nonenzymatic equilibrium with 1-acyl lysophospholipid in vivo. On the other hand, 3-acyl lysophospholipid is not found, at least in mammals, raising the question of whether the reason for this might be that the 3-acyl isomer lacks the biological activities of the other isomers. Here, to test this idea, we designed and synthesized a series of new 3-acyl lysophospholipids. Structure-activity relationship studies of more than 100 "glycol surrogate" derivatives led to the identification of potent and selective agonists for LysoPS receptors GPR34 and P2Y10. Thus, the non-natural 3-acyl compounds are indeed active and appear to be biologically orthogonal with respect to the physiologically relevant 1- and 2-acyl lysophospholipids.


Assuntos
Lisofosfolipídeos/farmacologia , Agonistas do Receptor Purinérgico P2/farmacologia , Receptores de Lisofosfolipídeos/agonistas , Receptores Purinérgicos P2/metabolismo , Células HEK293 , Humanos , Isomerismo , Lisofosfolipídeos/síntese química , Conformação Molecular , Simulação de Acoplamento Molecular , Agonistas do Receptor Purinérgico P2/síntese química , Relação Estrutura-Atividade
13.
Biochemistry ; 59(11): 1173-1201, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32124599

RESUMO

When lipid mediators bind to G-protein-coupled receptors (GPCRs), the ligand first enters the lipid bilayer, then diffuses laterally in the cell membrane to make hydrophobic contact with the receptor protein, and finally enters the receptor's binding pocket. In this process, the location of the hydrophobic contact point on the surface of the receptor has been little discussed even in cases in which the crystal structure has been determined, because the ligand binding pocket is buried inside the transmembrane (TM) domains. Here, we coupled an activator ligand to a series of membrane phospholipid surrogates, which constrain the depth of entry of the ligand into the lipid bilayer. Consequently, via measurement of the receptor-activating activity as a function of the depth of entry into the membrane, these surrogates can be used as molecular rulers to estimate the location of the hydrophobic contact point on the surface of GPCR. We focused on lysophosphatidylserine (LysoPS) receptor GPR34 and prepared a series of simplified membrane-lipid-surrogate-conjugated lysophospholipid analogues by attaching alkoxy amine chains of varying lengths to the hydrophobic tail of a potent GPR34 agonist. As expected, the activity of these lipid-conjugated LysoPS analogues was dependent on chain length. The predicted contact position matches the position of the terminal benzene ring of a nonlipidic ligand that protrudes between TMs 4 and 5 of the receptor. We further found that the nature of the terminal hydrophilic functional group of the conjugated membrane lipid surrogate strongly influences the activity, suggesting that lateral hydrophilic contact of LysoPS analogues with the receptor's surface is also crucial for ligand-GPCR binding.


Assuntos
Membrana Celular/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Lisofosfolipídeos/metabolismo , Motivos de Aminoácidos , Membrana Celular/química , Membrana Celular/genética , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lisofosfolipídeos/química , Ligação Proteica , Domínios Proteicos , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/genética
14.
Cell ; 177(7): 1933-1947.e25, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31160049

RESUMO

Heterotrimetic G proteins consist of four subfamilies (Gs, Gi/o, Gq/11, and G12/13) that mediate signaling via G-protein-coupled receptors (GPCRs), principally by receptors binding Gα C termini. G-protein-coupling profiles govern GPCR-induced cellular responses, yet receptor sequence selectivity determinants remain elusive. Here, we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique Gα subunit C termini. For each receptor, we probed chimeric Gα subunit activation via a transforming growth factor-α (TGF-α) shedding response in HEK293 cells lacking endogenous Gq/11 and G12/13 proteins, and complemented G-protein-coupling profiles through a NanoBiT-G-protein dissociation assay. Interrogation of the dataset identified sequence-based coupling specificity features, inside and outside the transmembrane domain, which we used to develop a coupling predictor that outperforms previous methods. We used the predictor to engineer designer GPCRs selectively coupled to G12. This dataset of fine-tuned signaling mechanisms for diverse GPCRs is a valuable resource for research in GPCR signaling.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Modelos Biológicos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Feminino , Células HEK293 , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Masculino , Células PC-3 , Receptores Acoplados a Proteínas G/genética
15.
Nature ; 548(7667): 356-360, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28792932

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid composed of a phosphate group, a glycerol backbone, and a single acyl chain that varies in length and saturation. LPA activates six class A G-protein-coupled receptors to provoke various cellular reactions. Because LPA signalling has been implicated in cancer and fibrosis, the LPA receptors are regarded as promising drug targets. The six LPA receptors are subdivided into the endothelial differentiation gene (EDG) family (LPA1-LPA3) and the phylogenetically distant non-EDG family (LPA4-LPA6). The structure of LPA1 has enhanced our understanding of the EDG family of LPA receptors. By contrast, the functional and pharmacological characteristics of the non-EDG family of LPA receptors have remained unknown, owing to the lack of structural information. Although the non-EDG LPA receptors share sequence similarity with the P2Y family of nucleotide receptors, the LPA recognition mechanism cannot be deduced from the P2Y1 and P2Y12 structures because of the large differences in the chemical structures of their ligands. Here we determine the 3.2 Å crystal structure of LPA6, the gene deletion of which is responsible for congenital hair loss, to clarify the ligand recognition mechanism of the non-EDG family of LPA receptors. Notably, the ligand-binding pocket of LPA6 is laterally open towards the membrane, and the acyl chain of the lipid used for the crystallization is bound within this pocket, indicating the binding mode of the LPA acyl chain. Docking and mutagenesis analyses also indicated that the conserved positively charged residues within the central cavity recognize the phosphate head group of LPA by inducing an inward shift of transmembrane helices 6 and 7, suggesting that the receptor activation is triggered by this conformational rearrangement.


Assuntos
Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/química , Receptores de Ácidos Lisofosfatídicos/metabolismo , Alopecia/congênito , Alopecia/genética , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Mutagênese , Filogenia , Estabilidade Proteica , Estrutura Secundária de Proteína , Receptores de Ácidos Lisofosfatídicos/genética , Especificidade por Substrato , Peixe-Zebra/genética
16.
J Med Chem ; 60(14): 6384-6399, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28715213

RESUMO

The ligands of certain G-protein-coupled receptors (GPCRs) have been identified as endogenous lipids, such as lysophosphatidylserine (LysoPS). Here, we analyzed the molecular basis of the structure-activity relationship of ligands of GPR34, one of the LysoPS receptor subtypes, focusing on recognition of the long-chain fatty acid moiety by the hydrophobic pocket. By introducing benzene ring(s) into the fatty acid moiety of 2-deoxy-LysoPS, we explored the binding site's preference for the hydrophobic shape. A tribenzene-containing fatty acid surrogate with modifications of the terminal aromatic moiety showed potent agonistic activity toward GPR34. Computational docking of these derivatives with a homology modeling/molecular dynamics-based virtual binding site of GPR34 indicated that a kink in the benzene-based lipid surrogates matches the L-shaped hydrophobic pocket of GPR34. A tetrabenzene-based lipid analogue bearing a bulky tert-butyl group at the 4-position of the terminal benzene ring exhibited potent GPR34 agonistic activity, validating the present hydrophobic binding pocket model.


Assuntos
Derivados de Benzeno/química , Ácidos Graxos/química , Fosfosserina/análogos & derivados , Receptores de Lisofosfolipídeos/química , Animais , Derivados de Benzeno/síntese química , Derivados de Benzeno/farmacologia , Sítios de Ligação , Ácidos Graxos/síntese química , Ácidos Graxos/farmacologia , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfosserina/síntese química , Fosfosserina/química , Fosfosserina/farmacologia , Receptores de Lisofosfolipídeos/agonistas , Relação Estrutura-Atividade
17.
J Med Chem ; 59(8): 3750-76, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27077565

RESUMO

Lysophosphatidylserine (LysoPS) is an endogenous lipid mediator that specifically activates membrane proteins of the P2Y and its related families of G protein-coupled receptors (GPCR), GPR34 (LPS1), P2Y10 (LPS2), and GPR174 (LPS3). Here, in order to increase potency and receptor selectivity, we designed and synthesized LysoPS analogues containing the conformational constraints of the glycerol moiety. These reduced structural flexibility by fixation of the glycerol framework of LysoPS using a 2-hydroxymethyl-3-hydroxytetrahydropyran skeleton, and related structures identified compounds which exhibited high potency and selectivity for activation of GPR34 or P2Y10. Morphing of the structural shape of the 2-hydroxymethyl-3-hydroxytetrahydropyran skeleton into a planar benzene ring enhanced the P2Y10 activation potentcy rather than the GPR34 activation.


Assuntos
Glicerol/química , Lisofosfolipídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Cálcio/metabolismo , Células HEK293 , Humanos , Lisofosfolipídeos/química , Conformação Molecular
18.
J Med Chem ; 58(10): 4204-19, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25970039

RESUMO

Lysophosphatidylserine (LysoPS) is an endogenous lipid mediator generated by hydrolysis of membrane phospholipid phosphatidylserine. Recent ligand screening of orphan G-protein-coupled receptors (GPCRs) identified two LysoPS-specific human GPCRs, namely, P2Y10 (LPS2) and GPR174 (LPS3), which, together with previously reported GPR34 (LPS1), comprise a LysoPS receptor family. Herein, we examined the structure-activity relationships of a series of synthetic LysoPS analogues toward these recently deorphanized LysoPS receptors, based on the idea that LysoPS can be regarded as consisting of distinct modules (fatty acid, glycerol, and l-serine) connected by phosphodiester and ester linkages. Starting from the endogenous ligand (1-oleoyl-LysoPS, 1), we optimized the structure of each module and the ester linkage. Accordingly, we identified some structural requirements of each module for potency and for receptor subtype selectivity. Further assembly of individually structure-optimized modules yielded a series of potent and LysoPS receptor subtype-selective agonists, particularly for P2Y10 and GPR174.


Assuntos
Lisofosfolipídeos/química , Receptores Acoplados a Proteínas G/agonistas , Receptores de Lisofosfolipídeos/agonistas , Receptores Purinérgicos P2/efeitos dos fármacos , Relação Estrutura-Atividade , Aminoácidos/química , Técnicas de Química Sintética , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Glicerol/química , Células HEK293 , Humanos , Estrutura Molecular , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/metabolismo , Fator de Crescimento Transformador alfa/metabolismo
19.
J Biochem ; 157(3): 151-60, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25320102

RESUMO

Lysophosphatidylserine (1-oleoyl-2 R-lysophosphatidylserine, LysoPS) has been shown to have lipid mediator-like actions such as stimulation of mast cell degranulation and suppression of T lymphocyte proliferation, although the mechanisms of LysoPS actions have been elusive. Recently, three G protein-coupled receptors (LPS1/GPR34, LPS2/P2Y10 and LPS3/GPR174) were found to react specifically with LysoPS, raising the possibility that LysoPS serves as a lipid mediator that exerts its role through these receptors. Previously, we chemically synthesized a number of LysoPS analogues and evaluated them as agonists for mast-cell degranulation. Here, we used a transforming growth factor-α (TGFα) shedding assay to see if these LysoPS analogues activated the three LysoPS receptors. Modification of the serine moiety significantly reduced the ability of the analogues to activate the three LysoPS receptors, whereas modification of other parts resulted in loss of activity in receptor-specific manner. We found that introduction of methyl group to serine moiety (1-oleoyl-lysophosphatidylallothreonine) and removal of sn-2 hydroxyl group (1-oleoyl-2-deoxy-LysoPS) resulted in reduction of reactivity with LPS1 and LPS3, respectively. Accordingly, we synthesized a LysoPS analogue with the two modifications (1-oleoyl-2-deoxy-lysophosphatidylallothreonine) and found it to be an LPS2-selective agonist. These pharmacological tools will definitely help to identify the biological roles of these LysoPS receptors.


Assuntos
Lisofosfolipídeos/farmacologia , Fosfatidilserinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Lisofosfolipídeos/metabolismo , Receptores Purinérgicos P2/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Concentração Inibidora 50 , Receptores Acoplados a Proteínas G/agonistas , Receptores de Lisofosfolipídeos/agonistas , Transdução de Sinais , Fator de Crescimento Transformador alfa/metabolismo
20.
J Lipid Res ; 55(10): 1986-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24891334

RESUMO

It is now accepted that lysophospholipids (LysoGPs) have a wide variety of functions as lipid mediators that are exerted through G protein-coupled receptors (GPCRs) specific to each lysophospholipid. While the roles of some LysoGPs, such as lysophosphatidic acid and sphingosine 1-phosphate, have been thoroughly examined, little is known about the roles of several other LysoGPs, such as lysophosphatidylserine (LysoPS), lysophosphatidylthreonine, lysophosphatidylethanolamine, lysophosphatidylinositol (LPI), and lysophosphatidylglycerol. Recently, a GPCR was found for LPI (GPR55) and three GPCRs (GPR34/LPS1, P2Y10/LPS2, and GPR174/LPS3) were found for LysoPS. In this review, we focus on these newly identified GPCRs and summarize the actions of LysoPS and LPI as lipid mediators.


Assuntos
Lisofosfolipídeos , Receptores de Lisofosfolipídeos , Animais , Humanos , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/genética , Receptores de Lisofosfolipídeos/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA