Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(3): e0265222, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37074192

RESUMO

Cholera has been a human scourge since the early 1800s and remains a global public health challenge, caused by the toxigenic strains of the bacterium Vibrio cholerae. In its aquatic reservoirs, V. cholerae has been shown to live in association with various arthropod hosts, including the chironomids, a diverse insect family commonly found in wet and semiwet habitats. The association between V. cholerae and chironomids may shield the bacterium from environmental stressors and amplify its dissemination. However, the interaction dynamics between V. cholerae and chironomids remain largely unknown.  In this study, we developed freshwater microcosms with chironomid larvae to test the effects of cell density and strain on V. cholerae-chironomid interactions. Our results show that chironomid larvae can be exposed to V. cholerae up to a high inoculation dose (109 cells/mL) without observable detrimental effects. Meanwhile, interstrain variability in host invasion, including prevalence, bacterial load, and effects on host survival, was highly cell density-dependent. Microbiome analysis of the chironomid samples by 16S rRNA gene amplicon sequencing revealed a general effect of V. cholerae exposure on microbiome species evenness. Taken together, our results provide novel insights into V. cholerae invasion dynamics of the chironomid larvae with respect to various doses and strains. The findings suggest that aquatic cell density is a crucial driver of V. cholerae invasion success in chironomid larvae and pave the way for future work examining the effects of a broader dose range and environmental variables (e.g., temperature) on V. cholerae-chironomid interactions. IMPORTANCE Vibrio cholerae is the causative agent of cholera, a significant diarrheal disease affecting millions of people worldwide. Increasing evidence suggests that the environmental facets of the V. cholerae life cycle involve symbiotic associations with aquatic arthropods, which may facilitate its environmental persistence and dissemination. However, the dynamics of interactions between V. cholerae and aquatic arthropods remain unexplored. This study capitalized on using freshwater microcosms with chironomid larvae to investigate the effects of bacterial cell density and strain on V. cholerae-chironomid interactions. Our results suggest that aquatic cell density is the primary determinant of V. cholerae invasion success in chironomid larvae, while interstrain variability in invasion outcomes can be observed under specific cell density conditions. We also determined that V. cholerae exposure generally reduces species evenness of the chironomid-associated microbiome. Collectively, these findings provide novel insights into V. cholerae-arthropod interactions using a newly developed experimental host system.


Assuntos
Chironomidae , Cólera , Vibrio cholerae , Animais , Humanos , Vibrio cholerae/genética , Cólera/microbiologia , Chironomidae/genética , Chironomidae/microbiologia , RNA Ribossômico 16S/genética , Ecossistema , Larva
2.
Curr Res Insect Sci ; 2: 100026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003272

RESUMO

Animals confined to different dietary conditions often exhibit distinct, sometimes contrasting, nutritional phenotypes and performance outcomes. This is especially true for many oviparous insects whose developmental diets can vary depending on the mother's egg-laying site selection. Much research on the relationship between preference and performance in insects has focused on larval success, which overlooks the complexities of dietary effects on diverse performance parameters across life stages and potential trade-offs between those parameters. Furthermore, the connection between diet-induced nutritional phenotype and performance trade-offs is not well understood. Here, using Drosophila suzukii, we quantify multiple performance indices of larvae and adults reared on five host fruits of different protein-to-sugar ratios (P:S) which have previously been shown to differ in attractiveness to fly foraging and oviposition. Our results demonstrate robust diet-specific performance trade-offs, with fly fecundity, larval development time, pupal size, and adult weight superior in flies reared on the high P:S raspberry diet, in contrast to the low P:S grape diet; but the reverse was found in terms of adult starvation resistance. Notably, the contrasting performance trade-offs are readily explained by the fly nutritional phenotype, reflected in the protein and energy (glucose and lipid) contents of flies reared on the two fruits. Together, our results provide experimental evidence for metabolic plasticity of D. suzukii reared on different fruits and the possibility of using adult nutritional phenotype as a marker for diet and performance outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA