Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672992

RESUMO

Blood pressure is the pressure exerted by the blood in the veins against the walls of the veins. If this value is above normal levels, it is known as high blood pressure (HBP) or hypertension (HPT). This health problem which often referred to as the "silent killer" reduces the quality of life and causes severe damage to many body parts in various ways. Besides, its mortality rate is very high. Hence, rapid and effective diagnosis of this health problem is crucial. In this study, an automatic diagnosis of HPT has been proposed using ballistocardiography (BCG) signals. The BCG signals were transformed to the time-frequency domain using the spectrogram method. While creating the spectrogram images, parameters such as window type, window length, overlapping rate, and fast Fourier transform size were adjusted. Then, these images were classified using ConvMixer architecture, similar to vision transformers (ViT) and multi-layer perceptron (MLP)-mixer structures, which have attracted a lot of attention. Its performance was compared with classical architectures such as ResNet18 and ResNet50. The results obtained showed that the ConvMixer structure gave very successful results and a very short operation time. Our proposed model has obtained an accuracy of 98.14%, 98.79%, and 97.69% for the ResNet18, ResNet50, and ConvMixer architectures, respectively. In addition, it has been observed that the processing time of the ConvMixer architecture is relatively short compared to these two architectures.

2.
Diagnostics (Basel) ; 12(10)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36292197

RESUMO

Emotion recognition is one of the most important issues in human-computer interaction (HCI), neuroscience, and psychology fields. It is generally accepted that emotion recognition with neural data such as electroencephalography (EEG) signals, functional magnetic resonance imaging (fMRI), and near-infrared spectroscopy (NIRS) is better than other emotion detection methods such as speech, mimics, body language, facial expressions, etc., in terms of reliability and accuracy. In particular, EEG signals are bioelectrical signals that are frequently used because of the many advantages they offer in the field of emotion recognition. This study proposes an improved approach for EEG-based emotion recognition on a publicly available newly published dataset, VREED. Differential entropy (DE) features were extracted from four wavebands (theta 4-8 Hz, alpha 8-13 Hz, beta 13-30 Hz, and gamma 30-49 Hz) to classify two emotional states (positive/negative). Five classifiers, namely Support Vector Machine (SVM), k-Nearest Neighbor (kNN), Naïve Bayesian (NB), Decision Tree (DT), and Logistic Regression (LR) were employed with DE features for the automated classification of two emotional states. In this work, we obtained the best average accuracy of 76.22% ± 2.06 with the SVM classifier in the classification of two states. Moreover, we observed from the results that the highest average accuracy score was produced with the gamma band, as previously reported in studies in EEG-based emotion recognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA