Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568418

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of individuals globally. It is characterized by the loss of dopaminergic neurons in Substantia Nigra pars compacta (SNc) and striatum. Neuroimaging techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI) help diagnosing PD. In this study, the focus was on developing technetium-99 m ([99mTc]Tc) radiolabeled drug delivery systems using plant-derived compounds for the diagnosis of PD. Madecassoside (MA), a plant-derived compound, was conjugated with Levodopa (L-DOPA) to form MA-L-DOPA, which was then encapsulated using Poly Lactic-co-Glycolic Acid (PLGA) to create MA-PLGA and MA-L-DOPA-PLGA nanocapsules. Extensive structural analysis was performed using various methods such as Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), liquid chromatography-mass spectrometry (LC-MS), thin layer chromatography (TLC), high performance liquid chromatography (HPLC), dynamic light scattering (DLS), and scanning electron microscopy (SEM) to characterize the synthesized products. Radiochemical yields of radiolabeled compounds were determined using thin layer radio chromatography (TLRC) and high performance liquid radio chromatography (HPLRC) methods. In vitro cell culture studies were conducted on human neuroblastoma (SH-SY5Y) and rat pheochromocytoma (PC-12) cell lines to assess the incorporation of [99mTc]Tc radiolabeled compounds ([99mTc]Tc-MA, [99mTc]Tc-MA-L-DOPA, [99mTc]Tc-MA-PLGA and [99mTc]Tc-MA-L-DOPA-PLGA) and the cytotoxicity of inactive compounds (MA and MA-L-DOPA compounds and encapsulated compounds (MA-PLGA and MA-L-DOPA-PLGA). Additionally, the biodistribution studies were carried out on healthy male Sprague-Dawley rats and a Parkinson's disease experimental model to evaluate the compounds' bioactivity using the radiolabeled compounds. The radiochemical yields of all radiolabeled compounds except [99mTc]Tc-L-DOPA-PLGA were above 95% and had stability over 6 h. The cytotoxic effects of all substances on SH-SY5Y and PC-12 cells increase with increasing concentration values. The uptake values of PLGA-encapsulated compounds are statistically significant in SH-SY5Y and PC-12 cells. The biodistribution studies showed that [99mTc]Tc-MA is predominantly retained in specific organs and brain regions, with notable uptake in the prostate, muscle, and midbrain. PLGA-encapsulation led to higher uptake in certain organs, suggesting its biodegradable nature may enhance tissue retention, and surface modifications might further optimize brain penetration. Overall, the results indicate that radiolabeled plant-derived encapsulated drug delivery systems with [99mTc]Tc hold potential as diagnostic agents for PD symptoms. This study contributes to the advancement of drug delivery agents in the field of brain research.

2.
Res Sq ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961521

RESUMO

Background: Prostate cancer (PC) is the most common type of cancer in elderly men, with a positive correlation with age. As resistance to treatment has developed, particularly in the progressive stage of the disease and in the presence of microfocal multiple bone metastases, new generation radionuclide therapies have emerged. Recently, [161Tb], a radiolanthanide introduced for treating micrometastatic foci, has shown great promise for treating prostate cancer. Results: In this study, Terbium-161 [161Tb]Tb was radiolabeled with prostate-specific membrane antigen (PSMA)-617 ([161Tb]-PSMA-617) and the therapeutic efficacy of the radiolabeled compound investigated in vitro and in vivo. [161Tb]-PSMA-617 was found to have a radiochemical yield of 97.99 ± 2.01% and was hydrophilic. [161Tb]-PSMA-617 was also shown to have good stability, with a radiochemical yield of over 95% up to 72 hours. In vitro, [161Tb]-PSMA-617 showed a cytotoxic effect on LNCaP cells but not on PC-3 cells. In vivo, scintigraphy imaging visualized the accumulation of [161Tb]-PSMA-617 in the prostate, kidneys, and bladder. Conclusions: The results suggest that [161Tb]-PSMA-617 can be an effective radiolabeled agent for the treatment of PSMA positive foci in prostate cancer.

3.
Cancer Biother Radiopharm ; 32(3): 75-81, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28358602

RESUMO

Recently, the synthesis of radiolabeled plant origin compounds has been increased due to their high uptake on some cancer cell lines. Eugenol (EUG), a phenolic natural compound in the essential oils of different spices such as Syzygium aromaticum (clove), Pimenta racemosa (bay leaves), and Cinnamomum verum (cinnamon leaf), has been exploited for various medicinal applications. EUG has antiviral, antioxidant, and anti-inflammatory functions and several anticancer properties. The objective of this article is to synthesize radioiodinated (131I) EUG and investigate its effect on Caco2, MCF7, and PC3 adenocarcinoma cell lines. It is observed that radioiodinated EUG would have potential on therapy and imaging due to its notable uptakes in studied cells.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/radioterapia , Eugenol/síntese química , Radioisótopos do Iodo/química , Compostos Radiofarmacêuticos/síntese química , Células CACO-2 , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Eugenol/administração & dosagem , Eugenol/química , Eugenol/isolamento & purificação , Humanos , Radioisótopos do Iodo/administração & dosagem , Marcação por Isótopo , Células MCF-7 , Compostos Radiofarmacêuticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA