Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(11)2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36356028

RESUMO

The paper presents the first proof of planktonic cyanoprokaryote genus Cuspidothrix as an anatoxin A (ATX) producer in Bulgarian wetlands. The results from polymerase chain reaction (PCR) obtained from two summer sampling campaigns in 26 selected lakes and reservoirs demonstrated presence of the anaC gene, responsible for ATX production in 21 strains of the genus. They were found in three waterbodies sampled in 2018 (coastal lake Vaya, coastal reservoir Poroy, inland reservoir Sinyata Reka) and in four waterbodies sampled in 2019 (inland reservoirs Duvanli, Koprinka, Plachidol 2, Sinyata Reka). The detected genetic diversity generally corresponds to the observations conducted by conventional light microscopy, by which we distinguished three species of Cuspidothrix (Cuspidothrix issatschenkoi, Cuspidothrix elenkinii and Cuspidothrix tropicalis, the latter considered alien in the country). Eleven strains showed high similarity to two sequences of C. issatschenkoi available from the National Centre for Biotechnology Information (NCBI). Ten other strains assembled in a group, which-in lack of available from NCBI genetic sequences-were presumed related to C. tropicalis and C. elenkinii after comparison with the results from light microscopy. Cuspidothrix strains found in Bulgarian waterbodies showed high genetic similarity to those isolated and sequenced from Asia (Japan, China) and Northern Europe (Norway, Finland).


Assuntos
Toxinas de Cianobactérias , Lagos , Bulgária , Tropanos
2.
J Toxicol ; 2022: 5647178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509523

RESUMO

Cyanotoxins (CTs) are a large and diverse group of toxins produced by the peculiar photosynthetic prokaryotes of the domain Cyanoprokaryota. Toxin-producing aquatic cyanoprokaryotes can develop in mass, causing "water blooms" or "cyanoblooms," which may lead to environmental disaster-water poisoning, extinction of aquatic life, and even to human death. CT studies on single cells and cells in culture are an important stage of toxicological studies with increasing impact for their further use for scientific and clinical purposes, and for policies of environmental protection. The higher cost of animal use and continuous resistance to the use of animals for scientific and toxicological studies lead to a progressive increase of cell lines use. This review aims to present (1) the important results of the effects of CT on human and animal cell lines, (2) the methods and concentrations used to obtain these results, (3) the studied cell lines and their tissues of origin, and (4) the intracellular targets of CT. CTs reviewed are presented in alphabetical order as follows: aeruginosins, anatoxins, BMAA (ß-N-methylamino-L-alanine), cylindrospermopsins, depsipeptides, lipopolysaccharides, lyngbyatoxins, microcystins, nodularins, cyanobacterial retinoids, and saxitoxins. The presence of all these data in a review allows in one look to advance the research on CT using cell cultures by facilitating the selection of the most appropriate methods, conditions, and cell lines for future toxicological, pharmacological, and physiological studies.

3.
Toxins (Basel) ; 13(7)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203459

RESUMO

Bulgaria, situated on the Balkan Peninsula, is rich in small and shallow, natural and man-made non-lotic waterbodies, which are threatened by blooms of Cyanoprokaryota/Cyanobacteria. Although cyanotoxins in Bulgarian surface waters are receiving increased attention, there is no information on microviridins and their producers. This paper presents results from a phytoplankton study, conducted in August 2019 in three lakes (Durankulak, Vaya, Uzungeren) and five reservoirs (Duvanli, Mandra, Poroy, Sinyata Reka, Zhrebchevo) in which a molecular-genetic analysis (PCR based on the precursor mdnA gene and subsequent translation to amino acid alignments), combined with conventional light microscopy and an HPLC analysis of marker pigments, were applied for the identification of potential microviridin producers. The results provide evidence that ten strains of the genus Microcystis, and of its most widespread species M. aeruginosa in particular, are potentially toxigenic in respect to microviridins. The mdnA sequences were obtained from all studied waterbodies and their translation to amino-acid alignments revealed the presence of five microviridin variants (types B/C, Izancya, CBJ55500.1 (Microcystis 199), and MC19, as well as a variant, which was very close to type A). This study adds to the general understanding of the microviridin occurrence, producers, and sequence diversity.


Assuntos
Lagos/microbiologia , Microcystis/metabolismo , Peptídeos Cíclicos/metabolismo , Fitoplâncton/metabolismo , Bulgária , Monitoramento Ambiental , Genes Bacterianos , Microcystis/genética , Microcystis/isolamento & purificação , Peptídeos Cíclicos/genética , Fitoplâncton/genética , Fitoplâncton/isolamento & purificação , Abastecimento de Água
4.
Water Sci Technol ; 83(10): 2463-2476, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34032623

RESUMO

This study aims at improving the existing algal-based wastewater treatment technologies by overcoming some of the major drawbacks of these systems such as large required land area, culture contamination, and energy-intensive algal harvesting. The experiments were carried out in an open photo-sequencing batch reactor at a laboratory-scale for nearly 2 months. A specific strain ACUS00207 of the aeroterrestrial green microalga Klebsormidium nitens (Kützing) Lokhorst was used. The strain is native to Bulgaria and belongs to a species that has never been used before in suspended growth systems for wastewater treatment for phosphorus removal. The culture of K. nitens showed promising results: phosphorus removal rates ranging from 0.4 to 1 mg total phosphorus L-1 d-1, efficient settling properties, and resistance to culture contamination with native microalgae. On the basis of the observed phosphorus removal mechanism of biologically mediated chemical precipitation/phosphorus precipitation, an innovative working mode of the sequencing batch reactor is suggested for reducing the hydraulic retention time and the required land area.


Assuntos
Microalgas , Purificação da Água , Reatores Biológicos , Biotecnologia , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias
5.
Toxins (Basel) ; 13(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946968

RESUMO

The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the "standard" toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, the health risk from phycotoxins on the background of the global warming and eutrophication and, from the other side, the current surge of interest which phycotoxins provoke due to their potential as novel compounds in medicine, pharmacy, cosmetics, bioremediation, agriculture and all aspects of biotechnological implications in human life.


Assuntos
Proteínas de Algas/metabolismo , Extremófilos/metabolismo , Plantas/química , Solo/química , Toxinas Biológicas/metabolismo , Atmosfera , Cianobactérias/metabolismo , Plantas/microbiologia
6.
Toxins (Basel) ; 13(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429940

RESUMO

Cylindrospermopsin (CYN) is a widely spread cyanotoxin that can occur in fresh water and food. This research aims to investigate CYN toxicity by studying the effects of drinking 0.25 nM of CYN-contaminated water from a natural source, and of the direct application of moderate concentrations of CYN on different animal targets. The chosen structures and activities are rat mitochondria inner membrane permeability, mitochondrial ATP synthase (ATPase) and rat liver diamine oxidase (DAO) activities (EC 1.4.3.22.), the force of the contraction of an excised frog heart preparation with functional innervation, and the viability of a human intestinal epithelial cell line (HIEC-6). The oral exposure to CYN decreased the reverse (hydrolase) activity of rat liver ATPase whereas its short-term, in vitro application was without significant effect on this organelle, DAO activity, heart contractions, and their neuronal regulation. The application of CYN reduced HIEC-6 cells' viability dose dependently. It was concluded that CYN is moderately toxic for the human intestinal epithelial cells, where the regeneration of the epithelial layer can be suppressed by CYN. This result suggests that CYN may provoke pathological changes in the human gastrointestinal tract.


Assuntos
Alcaloides/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular , Toxinas de Cianobactérias , Contaminação de Alimentos , Coração/efeitos dos fármacos , Humanos , Mitocôndrias Hepáticas/efeitos dos fármacos , Ranidae , Ratos , Ratos Wistar , Água/química , Poluentes Químicos da Água/toxicidade
7.
Toxins (Basel) ; 12(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936194

RESUMO

The paper presents results from the first application of polyphasic approach in studies of field samples from Bulgaria. This approach, which combined the conventional light microscopy (LM) and molecular-genetic methods (based on PCR amplified fragments of microcystin synthetase gene mcyE), revealed that almost all microcystin-producers in the studied eutrophic waterbodies belong to the genus Microcystis. During the molecular identification of toxin-producing strains by use of HEPF × HEPR pair of primers, we obtained 57 sequences, 56 of which formed 28 strains of Microcystis, spread in six clusters of the phylogenetic tree. By LM, seven Microcystis morphospecies were identified (M. aeruginosa, M. botrys, M. flos-aquae, M. natans, M. novacekii, M. smithii, and M. wesenbergii). They showed significant morphological variability and contributed from <1% to 98% to the total biomass. All data support the earlier opinions that taxonomic revision of Microcystis is needed, proved the presence of toxigenic strains in M. aeruginosa and M. wesenbergii, and suppose their existence in M. natans. Our results demonstrated also that genetic sequencing, and the use of HEPF × HEPR pair in particular, can efficiently serve in water quality monitoring for identifying the potential risk from microcystins, even in cases of low amounts of Microcystis in the water.


Assuntos
Cianobactérias , Microcistinas , Microcystis , Biomassa , Bulgária , Água Doce , Filogenia , Reação em Cadeia da Polimerase
8.
Biotechnol Biotechnol Equip ; 28(5): 871-877, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26019571

RESUMO

Vaya (Ramsar site, protected area and Natura 2000 site) is the biggest natural lake in Bulgaria and the shallowest Black Sea coastal lake, which during the last decades has undergone significant changes and was included as critically endangered in the Red List of Bulgarian Wetlands. Our studies were conducted during the summer and autumn months of three years - 2004-2006. The paper presents results on the phytoplankton abundance (numbers, biomass and carbon content) in combination with the indices of species diversity, evenness and dominance. Phytoplankton abundance was extremely high (average values of 1135 × 106 cells/L for the quantity and of 46 mg/L for the biomass) and increased in the end of the studied period (years 2005-2006), when decrease of species diversity and increase of the dominance index values were detected. The carbon content of the phytoplankton was at an average value of 9.7 mg/L and also increased from 2004 to 2006. Cyanoprokaryota dominated in the formation of the total carbon content of the phytoplankton, in its numbers (88%-97.8%), and in the biomass (62%-87.9%). All data on phytoplankton abundance and structural parameters in Vaya confirm the hypertrophic status of the lake and reflect the general negative trend in its development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA