Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Autophagy ; : 1-17, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798944

RESUMO

Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis critical for cellular homeostasis and metabolism, and whose defects have been associated with several human pathologies. While CMA has been well described in mammals, functional evidence has only recently been documented in fish, opening up new perspectives to tackle this function under a novel angle. Now we propose to explore CMA functions in the rainbow trout (RT, Oncorhynchus mykiss), a fish species recognized as a model organism of glucose intolerance and characterized by the presence of two paralogs of the CMA-limiting factor Lamp2A (lysosomal associated membrane protein 2A). To this end, we validated a fluorescent reporter (KFERQ-PA-mCherry1) previously used to track functional CMA in mammalian cells, in an RT hepatoma-derived cell line (RTH-149). We found that incubation of cells with high-glucose levels (HG, 25 mM) induced translocation of the CMA reporter to lysosomes and/or late endosomes in a KFERQ- and Lamp2A-dependent manner, as well as reduced its half-life compared to the control (5 mM), thus demonstrating increased CMA flux. Furthermore, we observed that activation of CMA upon HG exposure was mediated by generation of mitochondrial reactive oxygen species, and involving the antioxidant transcription factor Nfe2l2/Nrf2 (nfe2 like bZIP transcription factor 2). Finally, we demonstrated that CMA plays an important protective role against HG-induced stress, primarily mediated by one of the two RT Lamp2As. Together, our results provide unequivocal evidence for CMA activity existence in RT and highlight both the role and regulation of CMA during glucose-related metabolic disorders.Abbreviations: AREs: antioxidant response elements; CHC: α-cyano -4-hydroxycinnamic acid; Chr: chromosome; CMA: chaperone-mediated autophagy; CT: control; DMF: dimethyl fumarate; Emi: endosomal microautophagy; HG: high-glucose; HMOX1: heme oxygenase 1; H2O2: hydrogen peroxide; KFERQ: lysine-phenylalanine-glutamate-arginine-glutamine; LAMP1: lysosomal associated membrane protein 1; LAMP2A: lysosomal associated membrane protein 2A; MCC: Manders' correlation coefficient; Manders' correlation coefficient Mo: morpholino oligonucleotide; NAC: N-acetyl cysteine; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; PA-mCherry: photoactivable mCherry; PCC: Pearson's correlation coefficient; ROS: reactive oxygen species; RT: rainbow trout; siRNAs: small interfering RNAs; SOD: superoxide dismutase; Tsg101: tumor susceptibility 101; TTFA: 2-thenoyltrifluoroacetone; WGD: whole-genome duplication.

2.
Front Endocrinol (Lausanne) ; 14: 1211470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547324

RESUMO

Aquaculture is the fastest-growing food production sector and nowadays provides more food than extractive fishing. Studies focused on the understanding of how teleost growth is regulated are essential to improve fish production. Cysteamine (CSH) is a novel feed additive that can improve growth through the modulation of the GH/IGF axis; however, the underlying mechanisms and the interaction between tissues are not well understood. This study aimed to investigate the effects of CSH inclusion in diets at 1.65 g/kg of feed for 9 weeks and 1.65 g/kg or 3.3 g/kg for 9 weeks more, on growth performance and the GH/IGF-1 axis in plasma, liver, stomach, and white muscle in gilthead sea bream (Sparus aurata) fingerlings (1.8 ± 0.03 g) and juveniles (14.46 ± 0.68 g). Additionally, the effects of CSH stimulation in primary cultured muscle cells for 4 days on cell viability and GH/IGF axis relative gene expression were evaluated. Results showed that CSH-1.65 improved growth performance by 16% and 26.7% after 9 and 18 weeks, respectively, while CSH-3.3 improved 32.3% after 18 weeks compared to control diet (0 g/kg). However, no significant differences were found between both experimental doses. CSH reduced the plasma levels of GH after 18 weeks and increased the IGF-1 ones after 9 and 18 weeks. Gene expression analysis revealed a significant upregulation of the ghr-1, different igf-1 splice variants, igf-2 and the downregulation of the igf-1ra and b, depending on the tissue and dose. Myocytes stimulated with 200 µM of CSH showed higher cell viability and mRNA levels of ghr1, igf-1b, igf-2 and igf-1rb compared to control (0 µM) in a similar way to white muscle. Overall, CSH improves growth and modulates the GH/IGF-1 axis in vivo and in vitro toward an anabolic status through different synergic ways, revealing CSH as a feasible candidate to be included in fish feed.


Assuntos
Cisteamina , Fator de Crescimento Insulin-Like I , Dourada , Animais , Cisteamina/farmacologia , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Dourada/crescimento & desenvolvimento , Dourada/metabolismo , Ração Animal
4.
Cells ; 11(12)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35741074

RESUMO

Autophagy is a pleiotropic and evolutionarily conserved process in eukaryotes that encompasses different types of mechanisms by which cells deliver cytoplasmic constituents to the lysosome for degradation. Interestingly, in mammals, two different and specialized autophagic pathways, (i) the chaperone-mediated autophagy (CMA) and (ii) the endosomal microautophagy (eMI), both rely on the use of the same cytosolic chaperone HSPA8 (also known as HSC70) for targeting specific substrates to the lysosome. However, this is not true for all organisms, and differences exist between species with respect to the coexistence of these two autophagic routes. In this paper, we present an in-depth analysis of the evolutionary history of the main components of CMA and eMI and discuss how the observed discrepancies between species may contribute to improving our knowledge of these two functions and their interplays.


Assuntos
Autofagia Mediada por Chaperonas , Animais , Autofagia , Lisossomos/metabolismo , Macroautofagia , Mamíferos , Microautofagia
5.
Growth Horm IGF Res ; 63: 101456, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35305530

RESUMO

OBJECTIVE: Phoenixin-20 (Pnx-20) is a bioactive peptide with endocrine-like actions in vertebrates. Recent studies suggest Pnx-20 promotes growth hormone/insulin-like growth factors (Gh/Igf) axis, an important endocrine regulator of growth in mammals and fish. DESIGN: In this research, we determined whether Pnx-20 affects the different members of the Igf family, its binding proteins and receptors (Igf-system) in zebrafish liver and muscle. RESULTS: In vivo administration of Pnx-20 downregulated igfs, igf receptors (igfrs) and igf binding protein (igfbp) 5 mRNA expression in the liver of male and female zebrafish at both 1 and 6 h post-intraperitoneal (IP) injection. Interestingly, this effect occurred at a relatively earlier timepoint in female zebrafish suggesting sex-specific differences in Pnx-20 action. Besides, either 6 or 24 h in vitro incubations with Pnx-20 downregulated the expression of all igfs, igfrs and igfbp5 mRNAs (except igf2a) analyzed in a zebrafish liver cell (ZFL) line. Moreover, siRNA-mediated knockdown of Pnx-20 upregulated all Igf-system mRNAs analyzed in ZFL cells. Together, these results (both in vivo and in vitro) revealed a general suppressive action for both endogenous and exogenous Pnx-20 on the hepatic Igf-system of zebrafish. In contrast, a general sex-specific upregulation of the Igf-system mRNAs analyzed was found in the muscle of Pnx-20 injected fish. Future research should explore the sex- and time-differences observed in the present study. CONCLUSIONS: Collectively, this research shows that Pnx-20 is a tissue-specific regulator of the liver (suppressor) and muscle (stimulant) Igf signaling in both male and female zebrafish.


Assuntos
Somatomedinas , Peixe-Zebra , Animais , Feminino , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Masculino , Mamíferos/genética , Mamíferos/metabolismo , Músculos/metabolismo , Hormônios Peptídicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Somatomedina/metabolismo , Somatomedinas/genética , Somatomedinas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Antioxidants (Basel) ; 11(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35204202

RESUMO

The combination of physical exercise and a balanced diet presents substantial health benefits and could improve fish production. However, the redox balance can be affected by training regimen, dietary macronutrient ratio and their interaction. In this study, we conjointly evaluated the effects of physical activity (by voluntary swimming (VS) or sustained swimming as exercise (Ex)) and diet composition (by high-protein (HP) or high-lipid (HE) commercial diets) after 6 weeks on oxidative stress status in liver, white muscle and red muscle of gilthead sea bream juveniles. The HE diet increased the biochemical redox markers' thiobarbituric acid reactive substances (TBARS), advanced oxidation protein products (AOPP) and reduced thiols (-SH) in the different tissues. Exercise increased AOPP and -SH levels in liver but reduced TBARS levels in white muscle. Regarding the expression of oxidative stress, chaperones and apoptosis-related genes, the VSHE group showed the highest values and the VSHP the lowest, whereas the application of sustained swimming partially equalized those differences. Diet composition modulated the enzyme activity, prioritizing the superoxide dismutase and catalase in the HE-fed groups and the glutathione-related enzymes in the HP groups. Exercise also altered enzyme activity, but in a tissue-dependent manner. Overall, the redox balance in gilthead sea bream juveniles can be affected by diet composition and sustained swimming. However, the response will partly depend on the interaction between these factors and the tissue studied. Therefore, the combination of an adequate diet and sustained exercise could be used in fish production to improve the physiological redox status.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34848371

RESUMO

Adipogenesis is a tightly regulated process, and the involvement of autophagy has been recently proposed in mammalian models. In rainbow trout, two well-defined phases describe the development of primary cultured adipocyte cells: proliferation and differentiation. Nevertheless, information on the transcriptional profile at the onset of differentiation and the potential role of autophagy in this process is scarce. In the present study, the cells showed an early and transient induction of several adipogenic transcription factors genes' expression (i.e., cebpa and cebpb) along with the morphological changes (round shape filled with small lipid droplets) typical of the onset of adipogenesis. Then, the expression of various lipid metabolism-related genes involving the synthesis (fas), uptake (fatp1 and cd36), accumulation (plin2) and mobilization (hsl) of lipids, characteristic of the mature adipocyte, increased. In parallel, several autophagy markers (i.e., atg4b, gabarapl1 and lc3b) mirrored the expression of those adipogenic-related genes, suggesting a role of autophagy during in vitro fish adipogenesis. In this regard, the incubation of preadipocytes with lysosomal inhibitors (Bafilomycin A1 or Chloroquine), described to prevent autophagy flux, delayed the process of adipogenesis (i.e., cell remodelling), thus suggesting a possible relationship between autophagy and adipocyte differentiation in trout. Moreover, the disruption of the autophagic flux altered the expression of some key adipogenic genes such as cebpa and pparg. Overall, this study contributes to improve our knowledge on the regulation of rainbow trout adipocyte differentiation, and highlights for the first time in fish the involvement of autophagy on adipogenesis, suggesting a close-fitting connection between both processes.


Assuntos
Adipogenia , Oncorhynchus mykiss , Adipócitos , Adipogenia/genética , Animais , Autofagia , Diferenciação Celular , Metabolismo dos Lipídeos , Oncorhynchus mykiss/genética
8.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884912

RESUMO

Growth hormone and insulin-like growth factors (GH/IGF axis) regulate somatic growth in mammals and fish, although their action on metabolism is not fully understood in the latter. An intraperitoneal injection of extended-release recombinant bovine growth hormone (rbGH, Posilac®) was used in gilthead sea bream fingerlings and juveniles to analyse the metabolic response of liver and red and white muscles by enzymatic, isotopic and proteomic analyses. GH-induced lipolysis and glycogenolysis were reflected in liver composition, and metabolic and redox enzymes reported higher lipid use and lower protein oxidation. In white and red muscle reserves, rBGH increased glycogen while reducing lipid. The isotopic analysis of muscles showed a decrease in the recycling of proteins and a greater recycling of lipids and glycogen in the rBGH groups, which favoured a protein sparing effect. The protein synthesis capacity (RNA/protein) of white muscle increased, while cytochrome-c-oxidase (COX) protein expression decreased in rBGH group. Proteomic analysis of white muscle revealed only downregulation of 8 proteins, related to carbohydrate metabolic processes. The global results corroborated that GH acted by saving dietary proteins for muscle growth mainly by promoting the use of lipids as energy in the muscles of the gilthead sea bream. There was a fuel switch from carbohydrates to lipids with compensatory changes in antioxidant pathways that overall resulted in enhanced somatic growth.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hormônio do Crescimento/administração & dosagem , Dourada/crescimento & desenvolvimento , Somatomedinas/metabolismo , Animais , Bovinos , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glicogênio/metabolismo , Glicogenólise/efeitos dos fármacos , Hormônio do Crescimento/genética , Hormônio do Crescimento/farmacologia , Marcação por Isótopo , Lipólise/efeitos dos fármacos , Proteômica , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Dourada/metabolismo
9.
Animals (Basel) ; 11(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34438639

RESUMO

The physiological and endocrine benefits of sustained exercise in fish were largely demonstrated, and this work examines how the swimming activity can modify the effects of two diets (high-protein, HP: 54% proteins, 15% lipids; high-energy, HE: 50% proteins, 20% lipids) on different growth performance markers in gilthead sea bream juveniles. After 6 weeks of experimentation, fish under voluntary swimming and fed with HP showed significantly higher circulating growth hormone (GH) levels and plasma GH/insulin-like growth-1 (IGF-1) ratio than fish fed with HE, but under exercise, differences disappeared. The transcriptional profile of the GH-IGFs axis molecules and myogenic regulatory factors in liver and muscle was barely affected by diet and swimming conditions. Under voluntary swimming, fish fed with HE showed significantly increased mRNA levels of capn1, capn2, capn3, capns1a, n3, and ub, decreased gene and protein expression of Ctsl and Mafbx and lower muscle texture than fish fed with HP. When fish were exposed to sustained exercise, diet-induced differences in proteases' expression and muscle texture almost disappeared. Overall, these results suggest that exercise might be a useful tool to minimize nutrient imbalances and that proteolytic genes could be good markers of the culture conditions and dietary treatments in fish.

10.
Front Physiol ; 12: 678985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220544

RESUMO

Sustained exercise promotes growth in different fish species, and in gilthead seabream we have demonstrated that it improves nutrient use efficiency. This study assesses for differences in growth rate, tissue composition and energy metabolism in gilthead seabream juveniles fed two diets: high-protein (HP; 54% protein, 15% lipid) or high energy (HE; 50% protein, 20% lipid), under voluntary swimming (VS) or moderate-to-low-intensity sustained swimming (SS) for 6 weeks. HE fed fish under VS conditions showed lower body weight and higher muscle lipid content than HP fed fish, but no differences between the two groups were observed under SS conditions. Irrespective of the swimming regime, the white muscle stable isotopes profile of the HE group revealed increased nitrogen and carbon turnovers. Nitrogen fractionation increased in the HP fed fish under SS, indicating enhanced dietary protein oxidation. Hepatic gene expression markers of energy metabolism and mitochondrial biogenesis showed clear differences between the two diets under VS: a significant shift in the COX/CS ratio, modifications in UCPs, and downregulation of PGC1a in the HE-fed fish. Swimming induced mitochondrial remodeling through upregulation of fusion and fission markers, and removing almost all the differences observed under VS. In the HE-fed fish, white skeletal muscle benefited from the increased energy demand, amending the oxidative uncoupling produced under the VS condition by an excess of lipids and the pro-fission state observed in mitochondria. Contrarily, red muscle revealed more tolerant to the energy content of the HE diet, even under VS conditions, with higher expression of oxidative enzymes (COX and CS) without any sign of mitochondrial stress or mitochondrial biogenesis induction. Furthermore, this tissue had enough plasticity to shift its metabolism under higher energy demand (SS), again equalizing the differences observed between diets under VS condition. Globally, the balance between dietary nutrients affects mitochondrial regulation due to their use as energy fuels, but exercise corrects imbalances allowing practical diets with lower protein and higher lipid content without detrimental effects.

11.
Mol Cell Endocrinol ; 529: 111269, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819522

RESUMO

Prolactin (PRL), mainly synthesized and secreted by the lactotrophs and somatolactotrophs of the anterior pituitary, is a pleiotropic hormone that regulates lactation. In the last decade, nesfatin-1 (NESF) and NESF-like peptide (NLP), encoded in nucleobindin 1 and 2 (NUCB1 and NUCB2), respectively, were characterized as metabolic factors with a potential role in the control of pituitary hormones. We hypothesized that NUCBs and their encoded peptides (NESF and NLP) suppress PRL transcription in the pituitary. The main objective of this research was to determine whether exogenous NESF and NLP, and/or endogenous NUCB1 and NUCB2 regulate the expression of prl and preb mRNAs. Using immortalized rat somatolactotrophs (GH3 cells), dose-response studies were performed to test whether NESF and NLP affect prl and preb. Moreover, the ability of these peptides to modulate the effects of the PRL stimulator thyrotropin releasing hormone (TRH) was studied. Besides, the effects of siRNA-mediated knockdown of endogenous NUCBs on prl and preb mRNAs were determined. NESF and NLP reduced the transcription of prl and preb in GH3 cells. Both NESF and NLP also prevented the stimulatory effects of TRH prl and preb expression. The knockdown of endogenous NUCB1 attenuates both basal prl and TRH-induced expression of prl and preb, while the silencing of NUCBs did not affect the actions of exogenous NESF or NLP. Overall, this work reveals that NUCBs and encoded-peptides are novel regulators of PRL. Future research should test whether the effects observed here in GH3 cells are preserved both in vivo and at the post-transcriptional level.


Assuntos
Proteínas de Ligação a DNA/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Lactotrofos/efeitos dos fármacos , Nucleobindinas/farmacologia , Peptídeos/farmacologia , Prolactina/genética , Somatotrofos/efeitos dos fármacos , Fatores de Transcrição/genética , Animais , Linhagem Celular Transformada , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lactotrofos/citologia , Lactotrofos/metabolismo , Nucleobindinas/antagonistas & inibidores , Nucleobindinas/genética , Nucleobindinas/metabolismo , Prolactina/antagonistas & inibidores , Prolactina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais , Somatotrofos/citologia , Somatotrofos/metabolismo , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
12.
Sci Rep ; 10(1): 16686, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028951

RESUMO

Nesfatin-1 (NESF) and NESF-like peptide (NLP), encoded in nucleobindin 2 and 1 (NUCB2 and NUCB1), respectively, are orphan ligands and metabolic factors. We hypothesized that NESF and NLP suppress growth hormone (GH) synthesis, and aimed to determine whether mammalian somatotrophs are a source and site of action of these peptides. Using immortalized rat somatotrophs (GH3 cells), NUCB expression was determined by qPCR, immunofluorescence and Western blot. NESF and NLP binding to GH3 cells was tested using fluorescence imaging. Both time- and concentration-dependent studies were performed to test whether NESF and NLP affect GH. Moreover, the ability of these peptides to modulate the effects of ghrelin, and cell-signaling pathways were studied. GH3 cells express NUCB mRNAs and protein. Labeled NESF and NLP bind to the surface of GH3 cells, and incubation with either NESF or NLP decreased GH mRNA and protein expression, downregulated pit-1 mRNA, and blocked the GH stimulatory effects of ghrelin. Pre-incubation with either of these peptides reduced CREB phosphorylation by an AC-activator, but not when PKA was directly activated by a cAMP analog. Our results indicate that rat somatotrophs are a source of NUCBs, and that NESF and NLP downregulate GH synthesis through the AC/PKA/CREB signaling pathway.


Assuntos
Hormônio do Crescimento/biossíntese , Nucleobindinas/farmacologia , Fragmentos de Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Somatotrofos/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ratos , Somatotrofos/metabolismo
13.
Int J Mol Sci ; 21(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824312

RESUMO

Soybeans are one of the most used alternative dietary ingredients in aquafeeds. However, they contain phytoestrogens like genistein (GE), which can have an impact on fish metabolism and health. This study aimed to investigate the in vitro and in vivo effects of GE on lipid metabolism, apoptosis, and autophagy in rainbow trout (Oncorhynchus mykiss). Primary cultured preadipocytes were incubated with GE at different concentrations, 10 or 100 µM, and 1 µM 17ß-estradiol (E2). Furthermore, juveniles received an intraperitoneal injection of GE at 5 or 50 µg/g body weight, or E2 at 5 µg/g. In vitro, GE 100 µM increased lipid accumulation and reduced cell viability, apparently involving an autophagic process, indicated by the higher LC3-II protein levels, and higher lc3b and cathepsin d transcript levels achieved after GE 10 µM. In vivo, GE 50 µg/g upregulated the gene expression of fatty acid synthase (fas) and glyceraldehyde-3-phosphate dehydrogenase in adipose tissue, suggesting enhanced lipogenesis, whereas it increased hormone-sensitive lipase in liver, indicating a lipolytic response. Besides, autophagy-related genes increased in the tissues analyzed mainly after GE 50 µg/g treatment. Overall, these findings suggest that an elevated GE administration could lead to impaired adipocyte viability and lipid metabolism dysregulation in rainbow trout.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia , Autofagia , Genisteína/farmacologia , Fitoestrógenos/farmacologia , Truta/metabolismo , Adipócitos/metabolismo , Animais , Catepsina D/genética , Catepsina D/metabolismo , Sobrevivência Celular , Células Cultivadas , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Genisteína/toxicidade , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Metabolismo dos Lipídeos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fitoestrógenos/toxicidade
14.
Front Endocrinol (Lausanne) ; 11: 614981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33708174

RESUMO

Growth hormone (GH), mainly produced from the pituitary somatotrophs is a key endocrine regulator of somatic growth. GH, a pleiotropic hormone, is also involved in regulating vital processes, including nutrition, reproduction, physical activity, neuroprotection, immunity, and osmotic pressure in vertebrates. The dysregulation of the pituitary GH and hepatic insulin-like growth factors (IGFs) affects many cellular processes associated with growth promotion, including protein synthesis, cell proliferation and metabolism, leading to growth disorders. The metabolic and growth effects of GH have interesting applications in different fields, including the livestock industry and aquaculture. The latest discoveries on new regulators of pituitary GH synthesis and secretion deserve our attention. These novel regulators include the stimulators adropin, klotho, and the fibroblast growth factors, as well as the inhibitors, nucleobindin-encoded peptides (nesfatin-1 and nesfatin-1-like peptide) and irisin. This review aims for a comparative analysis of our current understanding of the endocrine regulation of GH from the pituitary of vertebrates. In addition, we will consider useful pharmacological molecules (i.e. stimulators and inhibitors of the GH signaling pathways) that are important in studying GH and somatotroph biology. The main goal of this review is to provide an overview and update on GH regulators in 2020. While an extensive review of each of the GH regulators and an in-depth analysis of specifics are beyond its scope, we have compiled information on the main endogenous and pharmacological regulators to facilitate an easy access. Overall, this review aims to serve as a resource on GH endocrinology for a beginner to intermediate level knowledge seeker on this topic.


Assuntos
Hormônio do Crescimento/metabolismo , Células Neuroendócrinas/metabolismo , Hipófise/metabolismo , Animais , Doenças do Sistema Endócrino/metabolismo , Doenças do Sistema Endócrino/patologia , Humanos , Células Neuroendócrinas/patologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Hipófise/patologia , Somatostatina/metabolismo
15.
J Fish Dis ; 42(8): 1169-1180, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31180144

RESUMO

The incidence of skeletal anomalies in reared fish has been translated for years in important economic losses for the aquaculture industry. In the present study, we have analysed the gene expression of extracellular matrix components and transcription factors involved in bone development in gilthead sea bream presenting different skeletal anomalies: lordosis (LD), lordosis-scoliosis-kyphosis (LSK) or opercular, dental or jaw malformations in comparison with control (CT) specimens. Results showed a possible link between the presence of LD and LSK and the significant downregulation of genes involved in osteoblasts' maturation and matrix mineralization (collagen type 1-alpha, osteopontin, osteocalcin, matrix Gla protein and tissue non-specific alkaline phosphatase), as well as in bone resorption (cathepsin K and matrix metalloproteinase 9) compared to CT animals. Contrarily, the key osteogenic transcription factor runx2 was upregulated in the malformed vertebra suggesting impaired determination of mesenchymal stem cells towards the osteoblastic lineage. Despite the gene expression patterns of the other malformed structures were not affected in comparison with CT fish, the results of the present study may contribute in the long term to identify potential candidate gene profiles associated with column deformities that may help reducing the incidence of appearance of skeletal anomalies in this important aquaculture species.


Assuntos
Matriz Extracelular/patologia , Doenças dos Peixes/genética , Expressão Gênica , Anormalidades Musculoesqueléticas/veterinária , Dourada/genética , Animais , Desenvolvimento Ósseo/genética , Doenças dos Peixes/patologia , Regulação da Expressão Gênica no Desenvolvimento , Anormalidades Musculoesqueléticas/genética , Anormalidades Musculoesqueléticas/patologia , Dourada/anormalidades
16.
Artigo em Inglês | MEDLINE | ID: mdl-30967839

RESUMO

World population is expected to increase to approximately 9 thousand million people by 2050 with a consequent food security decline. Besides, climate change is a major challenge that humanity is facing, with a predicted rise in mean sea surface temperature of more than 2°C during this century. This study aims to determine whether a rearing temperature of 19, 24, or 28°C may influence musculoskeletal development and muscle lipid metabolism in gilthead sea bream juveniles. The expression of growth hormone (GH)/insulin-like growth factors (IGFs) system-, osteogenic-, myogenic-, and lipid metabolism-related genes in bone and/or white muscle of treated fish, and the in vitro viability, mineralization, and osteogenic genes expression in primary cultured cells derived from bone of the same fish were analyzed. The highest temperature significantly down-regulated igf-1, igf-2, the receptor igf-1ra, and the binding proteins igfbp-4 and igfbp-5b in bone, and in muscle, igf-1 and igf-1ra, suggesting impaired musculoskeletal development. Concerning myogenic factors expression, contrary responses were observed, since the increase to 24°C significantly down-regulated myod1 and mrf4, while at 28°C myod2 and myogenin were significantly up-regulated. Moreover, in the muscle tissue, the expression of the fatty acid transporters cd36 and fabp11, and the lipases lipa and lpl-lk resulted significantly increased at elevated temperatures, whereas ß-oxidation markers cpt1a and cpt1b were significantly reduced. Regarding the primary cultured bone-derived cells, a significant up-regulation of the extracellular matrix proteins on, op, and ocn expression was found with increased temperatures, together with a gradual decrease in mineralization along with fish rearing temperature. Overall, these results suggest that increasing water temperature in this species appears to induce unfavorable growth and development of bone and muscle, through modulating the expression of different members of the GH/IGFs axis, myogenic and osteogenic genes, while accelerating the utilization of lipids as an energy source, although less efficiently than at optimal temperatures.

17.
Artigo em Inglês | MEDLINE | ID: mdl-30885833

RESUMO

The enhancement of the endocrine growth hormone (GH)/insulin-like growth factor I (IGF-I) system by the treatment with a sustained release formulation of a recombinant bovine GH (rBGH), is a good strategy to investigate growth optimization in aquaculture fish species. To further deepen into the knowledge of rBGH effects in fish and to estimate the growth potential of juveniles of gilthead sea bream, the present work evaluated rBGH injection on growth, GH/IGF-I axis and lipid metabolism modulation, and explored the conservation of GH effects provoked by the in vivo treatment using in vitro models of different tissues. The rBGH treatment increased body weight and specific growth rate (SGR) in juveniles and potentiated hyperplastic muscle growth while reducing circulating triglyceride levels. Moreover, the results demonstrated that the in vivo treatment enhanced also lipolysis in both isolated hepatocytes and adipocytes, as well as in day 4 cultured myocytes. Furthermore, these cultured myocytes extracted from rBGH-injected fish presented higher gene expression of GH/IGF-I axis-related molecules and myogenic regulatory factors, as well as stimulated myogenesis (i.e. increased protein expression of a proliferation and a differentiation marker) compared to Control fish-derived cells. These data, suggested that cells in vitro can retain some of the pathways activated by in vivo treatments in fish, what can be considered an interesting line of applied research. Overall, the results showed that rBGH stimulates somatic growth, including specifically muscle hyperplasia, as well as lipolytic activity in gilthead sea bream juveniles.


Assuntos
Hormônio do Crescimento/farmacologia , Lipólise/efeitos dos fármacos , Dourada/crescimento & desenvolvimento , Dourada/metabolismo , Tecido Adiposo/enzimologia , Tecido Adiposo/metabolismo , Animais , Biomarcadores/metabolismo , Hormônio do Crescimento/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Músculos/metabolismo , Hipófise/metabolismo , Somatomedinas/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-30347245

RESUMO

ß2-adrenoceptors are a subtype of G-protein coupled receptors whose activation leads to increased protein synthesis and decreased degradation in mammalian skeletal muscle, causing hypertrophy. In this study, we compared the effects of the classical ß2-agonist noradrenaline (NA) with two representatives of a new generation of agonists (formoterol, FOR and salmeterol, SALM) on growth and metabolism of primary cultured muscle cells of gilthead sea bream. Activation of signaling pathways, cell development and expression of relevant genes were analyzed in day 4 myocytes. The three agonists increased either cAMP levels or PKA phosphorylation, plus TOR phosphorylation, and the proportion of proliferating cell nuclear antigen (PCNA)-positive cells, in parallel with pcna mRNA levels. Thus, demonstrating that these cells are ß2-agonists-responsive, and supporting enhanced cell proliferation. The expression of the myogenic factor myf5 was significantly down-regulated, suggesting that the cells were already destined to the muscular linage; while insulin-like growth factors (igf-1 and igf-2) transcript levels were up-regulated, proposing an additional anabolic effect through their local production. Furthermore, SALM treatment up-regulated expression of the lipases (hsl and lipa) and the ß-oxidation marker cpt1a, and all three agonists increased mitochondrial dehydrogenase hadh mRNA levels. These data correspond with a situation of enhanced lipolytic and ß-oxidation capacity, a fact supported by the higher glycerol released into the media induced by the agonists. Overall, these results suggest a hyperplastic growth condition and a favorable protein/fat ratio profile upon these treatments; consequently, ß2-agonists (especially SALM) may be considered good candidates to optimize the growth in this aquaculture species.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Músculos/efeitos dos fármacos , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Dourada/fisiologia , Animais , Células Cultivadas , Músculos/metabolismo
19.
BMC Genomics ; 19(1): 677, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223788

RESUMO

BACKGROUND: Environmental changes of biotic or abiotic nature during critical periods of early development may exert a profound influence on physiological functions later in life. This process, named developmental programming can also be driven through parental nutrition. At molecular level, epigenetic modifications are the most likely candidate for persistent modulation of genes expression in later life. RESULTS: In order to investigate epigenetic modifications induced by programming in rainbow trout, we focused on bnip3 and bnip3l paralogous genes known to be sensitive to environmental changes but also regulated by epigenetic modifications. Two specific stimuli were used: (i) early acute hypoxia applied at embryo stage and (ii) broodstock and fry methionine deficient diet, considering methionine as one of the main methyl-group donor needed for DNA methylation. We observed a programming effect of hypoxia with an increase of bnip3a and the four paralogs of bnip3l expression level in fry. In addition, parental methionine nutrition was correlated to bnip3a and bnip3lb1 expression showing evidence for early fry programming. We highlighted that both stimuli modified DNA methylation levels at some specific loci of bnip3a and bnip3lb1. CONCLUSION: Overall, these data demonstrate that methionine level and hypoxia stimulus can be of critical importance in metabolic programming. Both stimuli affected DNA methylation of specific loci, among them, an interesting CpG site have been identified, namely - 884 bp site of bnip3a, and may be positively related with mRNA levels.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Metilação de DNA , Epigênese Genética , Doenças dos Peixes/genética , Hipóxia/veterinária , Metionina/deficiência , Oncorhynchus mykiss/genética , Regiões Promotoras Genéticas/genética , Ração Animal/efeitos adversos , Animais , Ilhas de CpG , Evolução Molecular , Doenças dos Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hipóxia/genética , Hipóxia/metabolismo , Oncorhynchus mykiss/crescimento & desenvolvimento , Filogenia
20.
Artigo em Inglês | MEDLINE | ID: mdl-30105002

RESUMO

Ghrelin is involved in the regulation of growth in vertebrates through controlling different functions, such as feed intake, metabolism, intestinal activity or growth hormone (Gh) secretion. The aim of this work was to identify the sequences of preproghrelin and Ghrelin receptors (ghsrs), and to study their responses to different nutritional conditions in gilthead sea bream (Sparus aurata) juveniles. The structure and phylogeny of S. aurata preproghrelin was analyzed, and a tissue screening was performed. The effects of 21 days of fasting and 2, 5, 24 h, and 7 days of refeeding on plasma levels of Ghrelin, Gh and Igf-1, and the gene expression of preproghrelin, ghsrs and members of the Gh/Igf-1 system were determined in key tissues. preproghrelin and the receptors are well conserved, being expressed mainly in stomach, and in the pituitary and brain, respectively. Twenty-one days of fasting resulted in a decrease in growth while Ghrelin plasma levels were elevated to decrease at 5 h post-prandial when pituitary ghsrs expression was minimum. Gh in plasma increased during fasting and slowly felt upon refeeding, while plasma Igf-1 showed an inverse profile. Pituitary gh expression augmented during fasting reaching maximum levels at 1 day post-feeding while liver igf-1 expression and that of its splice variants decreased to lowest levels. Liver Gh receptors expression was down-regulated during fasting and recovered after refeeding. This study demonstrates the important role of Ghrelin during fasting, its acute down-regulation in the post-prandial stage and its interaction with pituitary Ghsrs and Gh/Igf-1 axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA