Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2740: 63-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393469

RESUMO

Plk1 (polo-like kinase 1) is an evolutionarily conserved serine/threonine kinase instrumental for mitotic entry and progression. Beyond these canonical functions, Plk1 also regulates cell polarization and cell fate during asymmetric cell divisions in C. elegans and D. melanogaster. Plk1 contains a specialized phosphoserine-threonine binding domain, the polo-box domain (PBD), which localizes and concentrates the kinase at its various sites of action within the cell in space and time. Here we present protocols to express and purify the C. elegans Plk1 kinase along with biochemical and phosphoproteomic approaches to interrogate the PBD interactome and to dissect Plk1 substrate interactions. These protocols are most suitable for the identification of Plk1 targets in C. elegans embryos but can be easily adapted to identify and study Plk1 substrates from any source."


Assuntos
Caenorhabditis elegans , Proteínas de Ciclo Celular , Animais , Proteínas de Ciclo Celular/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Zigoto/metabolismo , Quinase 1 Polo-Like , Drosophila melanogaster/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/química
2.
Sci Adv ; 9(29): eadf7826, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37467327

RESUMO

The nuclear envelope, which protects and organizes the genome, is dismantled during mitosis. In the Caenorhabditis elegans zygote, nuclear envelope breakdown (NEBD) of the parental pronuclei is spatially and temporally regulated during mitosis to promote the unification of the maternal and paternal genomes. Nuclear pore complex (NPC) disassembly is a decisive step of NEBD, essential for nuclear permeabilization. By combining live imaging, biochemistry, and phosphoproteomics, we show that NPC disassembly is a stepwise process that involves Polo-like kinase 1 (PLK-1)-dependent and -independent steps. PLK-1 targets multiple NPC subcomplexes, including the cytoplasmic filaments, central channel, and inner ring. PLK-1 is recruited to and phosphorylates intrinsically disordered regions (IDRs) of several multivalent linker nucleoporins. Notably, although the phosphosites are not conserved between human and C. elegans nucleoporins, they are located in IDRs in both species. Our results suggest that targeting IDRs of multivalent linker nucleoporins is an evolutionarily conserved driver of NPC disassembly during mitosis.


Assuntos
Proteínas de Caenorhabditis elegans , Poro Nuclear , Animais , Humanos , Poro Nuclear/genética , Poro Nuclear/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Quinase 1 Polo-Like
3.
bioRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865292

RESUMO

The nuclear envelope, which protects and organizes the interphase genome, is dismantled during mitosis. In the C. elegans zygote, nuclear envelope breakdown (NEBD) of the parental pronuclei is spatially and temporally regulated during mitosis to promote the unification of the parental genomes. During NEBD, Nuclear Pore Complex (NPC) disassembly is critical for rupturing the nuclear permeability barrier and removing the NPCs from the membranes near the centrosomes and between the juxtaposed pronuclei. By combining live imaging, biochemistry, and phosphoproteomics, we characterized NPC disassembly and unveiled the exact role of the mitotic kinase PLK-1 in this process. We show that PLK-1 disassembles the NPC by targeting multiple NPC sub-complexes, including the cytoplasmic filaments, the central channel, and the inner ring. Notably, PLK-1 is recruited to and phosphorylates intrinsically disordered regions of several multivalent linker nucleoporins, a mechanism that appears to be an evolutionarily conserved driver of NPC disassembly during mitosis. (149/150 words). One-Sentence Summary: PLK-1 targets intrinsically disordered regions of multiple multivalent nucleoporins to dismantle the nuclear pore complexes in the C. elegans zygote.

4.
Elife ; 112022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35259092

RESUMO

Previously, we reported that the Polo-like kinase PLK-1 phosphorylates the single Caenorhabditis elegans lamin (LMN-1) to trigger lamina depolymerization during mitosis. We showed that this event is required to form a pronuclear envelope scission event that removes membranes on the juxtaposed oocyte and sperm pronuclear envelopes in the zygote, allowing the parental chromosomes to merge in a single nucleus after segregation (Velez-Aguilera et al., 2020). Here, we show that cortical microtubule pulling forces contribute to pronuclear envelopes scission by promoting mitotic spindle elongation, and conversely, nuclear envelopes remodeling facilitates spindle elongation. We also demonstrate that weakening the pronuclear envelopes via PLK-1-mediated lamina depolymerization, is a prerequisite for the astral microtubule pulling forces to trigger pronuclear membranes scission. Finally, we provide evidence that PLK-1 mainly acts via lamina depolymerization in this process. These observations thus indicate that temporal coordination between lamina depolymerization and mitotic spindle elongation facilitates pronuclear envelopes scission and parental genomes unification.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Embrião não Mamífero , Laminina/genética , Microtúbulos , Mitose , Proteínas Serina-Treonina Quinases/genética , Fuso Acromático , Zigoto
5.
Elife ; 92020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33030429

RESUMO

Life of sexually reproducing organisms starts with the fusion of the haploid egg and sperm gametes to form the genome of a new diploid organism. Using the newly fertilized Caenorhabditis elegans zygote, we show that the mitotic Polo-like kinase PLK-1 phosphorylates the lamin LMN-1 to promote timely lamina disassembly and subsequent merging of the parental genomes into a single nucleus after mitosis. Expression of non-phosphorylatable versions of LMN-1, which affect lamina depolymerization during mitosis, is sufficient to prevent the mixing of the parental chromosomes into a single nucleus in daughter cells. Finally, we recapitulate lamina depolymerization by PLK-1 in vitro demonstrating that LMN-1 is a direct PLK-1 target. Our findings indicate that the timely removal of lamin is essential for the merging of parental chromosomes at the beginning of life in C. elegans and possibly also in humans, where a defect in this process might be fatal for embryo development.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Laminina/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero/metabolismo , Genoma Helmíntico , Laminina/metabolismo , Mitose , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
6.
Aging Cell ; 18(5): e13002, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31305018

RESUMO

The study of Hutchinson-Gilford progeria syndrome (HGPS) has provided important clues to decipher mechanisms underlying aging. Progerin, a mutant lamin A, disrupts nuclear envelope structure/function, with further impairment of multiple processes that culminate in senescence. Here, we demonstrate that the nuclear protein export pathway is exacerbated in HGPS, due to progerin-driven overexpression of CRM1, thereby disturbing nucleocytoplasmic partitioning of CRM1-target proteins. Enhanced nuclear export is central in HGPS, since pharmacological inhibition of CRM1 alleviates all aging hallmarks analyzed, including senescent cellular morphology, lamin B1 downregulation, loss of heterochromatin, nuclear morphology defects, and expanded nucleoli. Exogenous overexpression of CRM1 on the other hand recapitulates the HGPS cellular phenotype in normal fibroblasts. CRM1 levels/activity increases with age in fibroblasts from healthy donors, indicating that altered nuclear export is a common hallmark of pathological and physiological aging. Collectively, our findings provide novel insights into HGPS pathophysiology, identifying CRM1 as potential therapeutic target in HGPS.


Assuntos
Senilidade Prematura/metabolismo , Núcleo Celular/metabolismo , Senescência Celular , Carioferinas/metabolismo , Proteínas Nucleares/metabolismo , Progéria/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Senilidade Prematura/patologia , Células Cultivadas , Humanos , Fenótipo , Progéria/patologia , Proteína Exportina 1
7.
Cell Death Dis ; 10(3): 196, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814495

RESUMO

ß-dystroglycan (ß-DG) is a key component of multiprotein complexes in the plasma membrane and nuclear envelope. In addition, ß-DG undergoes two successive proteolytic cleavages that result in the liberation of its intracellular domain (ICD) into the cytosol and nucleus. However, stimuli-inducing ICD cleavage and the physiological relevance of this proteolytic fragment are largely unknown. In this study we show for the first time that ß-DG ICD is targeted to the nucleolus where it interacts with the nuclear proteins B23 and UBF (central factor of Pol I-mediated rRNA gene transcription) and binds to rDNA promoter regions. Interestingly DG silencing results in reduced B23 and UBF levels and aberrant nucleolar morphology. Furthermore, ß-DG ICD cleavage is induced by different nucleolar stressors, including oxidative stress, acidosis, and UV irradiation, which implies its participation in the response to nucleolar stress. Consistent with this idea, overexpression of ß-DG elicited mislocalization and decreased levels of UBF and suppression of rRNA expression, which in turn provoked altered ribosome profiling and decreased cell growth. Collectively our data reveal that ß-DG ICD acts as negative regulator of rDNA transcription by impeding the transcriptional activity of UBF, as a part of the protective mechanism activated in response to nucleolar stress.


Assuntos
Nucléolo Celular/metabolismo , Distroglicanas/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Ribossômico/biossíntese , Animais , Proliferação de Células/genética , Citoplasma/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Distroglicanas/antagonistas & inibidores , Distroglicanas/genética , Camundongos , Mioblastos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Estresse Oxidativo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Domínios Proteicos/genética , RNA Ribossômico/genética , Ribossomos/metabolismo , Transcrição Gênica , Regulação para Cima/genética
8.
Sci Rep ; 8(1): 17785, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30531996

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

9.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 406-420, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29175376

RESUMO

ß-Dystroglycan (ß-DG) is a plasma membrane protein that has ability to target to the nuclear envelope (NE) to maintain nuclear architecture. Nevertheless, mechanisms controlling ß-DG nuclear localization and the physiological consequences of a failure of trafficking are largely unknown. We show that ß-DG has a nuclear export pathway in myoblasts that depends on the recognition of a nuclear export signal located in its transmembrane domain, by CRM1. Remarkably, NES mutations forced ß-DG nuclear accumulation resulting in mislocalization and decreased levels of emerin and lamin B1 and disruption of various nuclear processes in which emerin (centrosome-nucleus linkage and ß-catenin transcriptional activity) and lamin B1 (cell cycle progression and nucleoli structure) are critically involved. In addition to nuclear export, the lifespan of nuclear ß-DG is restricted by its nuclear proteasomal degradation. Collectively our data show that control of nuclear ß-DG content by the combination of CRM1 nuclear export and nuclear proteasome pathways is physiologically relevant to preserve proper NE structure and activity.


Assuntos
Distroglicanas/metabolismo , Carioferinas/metabolismo , Laminina/metabolismo , Membrana Nuclear/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Linhagem Celular , Distroglicanas/genética , Carioferinas/genética , Laminina/genética , Camundongos , Membrana Nuclear/genética , Complexo de Endopeptidases do Proteassoma/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteína Exportina 1
10.
Sci Rep ; 7(1): 9906, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852008

RESUMO

ß-Dystroglycan (ß-DG) is a transmembrane protein with critical roles in cell adhesion, cytoskeleton remodeling and nuclear architecture. This functional diversity is attributed to the ability of ß-DG to target to, and conform specific protein assemblies at the plasma membrane (PM) and nuclear envelope (NE). Although a classical NLS and importin α/ß mediated nuclear import pathway has already been described for ß-DG, the intracellular trafficking route by which ß-DG reaches the nucleus is unknown. In this study, we demonstrated that ß-DG undergoes retrograde intracellular trafficking from the PM to the nucleus via the endosome-ER network. Furthermore, we provided evidence indicating that the translocon complex Sec61 mediates the release of ß-DG from the ER membrane, making it accessible for importins and nuclear import. Finally, we show that phosphorylation of ß-DG at Tyr890 is a key stimulus for ß-DG nuclear translocation. Collectively our data describe the retrograde intracellular trafficking route that ß-DG follows from PM to the nucleus. This dual role for a cell adhesion receptor permits the cell to functionally connect the PM with the nucleus and represents to our knowledge the first example of a cell adhesion receptor exhibiting retrograde nuclear trafficking and having dual roles in PM and NE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA