RESUMO
Glucosidase I (GI) removes the outermost glucose from protein-linked Glc3Man9GlcNAc2 (G3M9) in the endoplasmic reticulum (ER). Individuals with congenital disorders of glycosylation MOGS-CDG bear mutations in the GI-encoding gene (gls1). Although GI absence has been reported to produce lethality in Schizosaccharomyces pombe yeasts, here we obtained two viable Δgls1 mutants, one with a very sick but not lethal phenotype (Δgls1-S) and the other with a healthier one (Δgls1-H). The sick strain displayed only G3M9 as an ER protein-linked oligosaccharide, whereas the healthier strain had both G3M9 and Man9GlcNAc2 The lipid-linked oligosaccharide patterns of the two strains revealed that the most abundantly formed glycans were G3M9 in Δgls1-S and Glc2Man9GlcNAc2 in Δgls1-H, suggesting reduced Alg10p glucosyltransferase activity in the Δgls1-H strain. A mutation in the alg10+ gene was indeed observed in this strain. Our results indicated that abrogated G3M9 deglucosylation was responsible for the severe defects observed in Δgls1-S cells. Further studies disclosed that the defects could not be ascribed to disruption of glycoprotein entrance into calnexin-folding cycles, inhibition of the oligosaccharyltransferase by transfer reaction products, or reduced proteasomal degradation of misfolded glycoproteins. Lack of triglucosylated glycoprotein deglucosylation neither significantly prevented glycan elongation in the Golgi nor modified the overall cell wall monosaccharide composition. Nevertheless, it resulted in a distorted cell wall and in the absence of underlying ER membranes. Furthermore, Golgi expression of human endomannosidase partially restored normal growth in Δgls1-S cells. We propose that accumulation of G3M9-bearing glycoproteins is toxic and at least partially responsible for defects observed in MOGS-CDG.
Assuntos
Defeitos Congênitos da Glicosilação , Deleção de Genes , Modelos Biológicos , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , alfa-Glucosidases , Defeitos Congênitos da Glicosilação/enzimologia , Defeitos Congênitos da Glicosilação/genética , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicosilação , Humanos , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismoRESUMO
BACKGROUND & AIMS: All known hepatitis B virus (HBV) genotypes occur in humans and hominoid Old World non-human primates (NHPs). The divergent woolly monkey HBV (WMHBV) forms another orthohepadnavirus species. The evolutionary origins of HBV are unclear. METHODS: We analysed sera from 124 Brazilian monkeys collected during 2012-2016 for hepadnaviruses using molecular and serological tools, and conducted evolutionary analyses. RESULTS: We identified a novel orthohepadnavirus species in capuchin monkeys (capuchin monkey hepatitis B virus [CMHBV]). We found CMHBV-specific antibodies in five animals and high CMHBV concentrations in one animal. Non-inflammatory, probably chronic infection was consistent with an intact preCore domain, low genetic variability, core deletions in deep sequencing, and no elevated liver enzymes. Cross-reactivity of antisera against surface antigens suggested antigenic relatedness of HBV, CMHBV, and WMHBV. Infection-determining CMHBV surface peptides bound to the human HBV receptor (human sodium taurocholate co-transporting polypeptide), but preferentially interacted with the capuchin monkey receptor homologue. CMHBV and WMHBV pseudotypes infected human hepatoma cells via the human sodium taurocholate co-transporting polypeptide, and were poorly neutralised by HBV vaccine-derived antibodies, suggesting that cross-species infections may be possible. Ancestral state reconstructions and sequence distance comparisons associated HBV with humans, whereas primate hepadnaviruses as a whole were projected to NHP ancestors. Co-phylogenetic analyses yielded evidence for co-speciation of hepadnaviruses and New World NHP. Bayesian hypothesis testing yielded strong support for an association of the HBV stem lineage with hominoid ancestors. Neither CMHBV nor WMHBV was likely the ancestor of the divergent human HBV genotypes F/H found in American natives. CONCLUSIONS: Our data suggest ancestral co-speciation of hepadnaviruses and NHP, and an Old World origin of the divergent HBV genotypes F/H. The identification of a novel primate hepadnavirus offers new perspectives for urgently needed animal models of chronic hepatitis B. LAY SUMMARY: The origins of HBV are unclear. The new orthohepadnavirus species from Brazilian capuchin monkeys resembled HBV in elicited infection patterns and could infect human liver cells using the same receptor as HBV. Evolutionary analyses suggested that primate HBV-related viruses might have emerged in African ancestors of New World monkeys millions of years ago. HBV was associated with hominoid primates, including humans and apes, suggesting evolutionary origins of HBV before the formation of modern humans. HBV genotypes found in American natives were divergent from those found in American monkeys, and likely introduced along prehistoric human migration. Our results elucidate the evolutionary origins and dispersal of primate HBV, identify a new orthohepadnavirus reservoir, and enable new perspectives for animal models of hepatitis B.
Assuntos
Cebus/virologia , Evolução Molecular , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Orthohepadnavirus/genética , Orthohepadnavirus/isolamento & purificação , Sequência de Aminoácidos , Animais , Teorema de Bayes , Brasil , Especiação Genética , Genoma Viral , Hepatite B/veterinária , Hepatite B/virologia , Antígenos da Hepatite B/química , Antígenos da Hepatite B/genética , Antígenos da Hepatite B/imunologia , Vírus da Hepatite B/classificação , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Modelos Genéticos , Doenças dos Macacos/virologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/fisiologia , Orthohepadnavirus/classificação , Filogenia , Primatas/virologia , Receptores Virais/fisiologia , Simportadores/fisiologia , Internalização do VírusRESUMO
Arylsulfatase A is an oligomeric lysosomal enzyme. In the present study, we use this enzyme as a model protein to examine how heteromerization of wild-type and misfolded endoplasmic reticulum-degraded arylsulfatase A polypeptides affects the quality control of wild-type arylsulfatase A subunits. Using a conformation sensitive monoclonal antibody, we show that, within heteromers of misfolded and wild-type arylsulfatase A, the wild-type subunits are not fully folded. The results obtained show that arylsulfatase A polypeptide complexes, rather than the monomers, are subject to endoplasmic reticulum quality control and that, within a heteromer, the misfolded subunit exerts a dominant negative effect on the wild-type subunit. Although it has been shown that mature lysosomal arylsulfatase A forms dimers at neutral pH, the results obtained in the present study demonstrate that, in the early biosynthetic pathway, arylsulfatase A forms oligomers with more than two subunits.
Assuntos
Cerebrosídeo Sulfatase/metabolismo , Retículo Endoplasmático/metabolismo , Dobramento de Proteína , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Cerebrosídeo Sulfatase/química , Cerebrosídeo Sulfatase/genética , Cricetinae , Dimerização , Lisossomos/metabolismo , Modelos Biológicos , Mutação/genéticaRESUMO
The cDNA for human endo-alpha1,2-mannosidase was reconstructed using two independent EST-clones and its properties characterized. The 2837 bp cDNA construct contained a 1389 bp open reading frame (ORF) encoding for 462 amino acids and an approximately 53.6 kDa protein, respectively. Hydrophobicity analysis of this amino acid sequence, as well as proteolytic degradation studies, indicate that the enzyme is a type II protein, anchored in the membrane via a 19 amino-acid long apolar sequence close to the N-terminus. Human endo-alpha1,2-mannosidase displays a high degree of sequence identity with the catalytic domain of the homologous rat liver endo-enzyme, but differs substantially in the N-terminal peptide region, which includes the transmembrane domain. No sequence similarity exists with other processing alpha-glycosidases. Based on sequence information provided by the 2837 bp construct, the cDNA consisting of the complete 1389 bp ORF was amplified by RT-PCR using human fibroblast RNA. Incubation of E. coli lysates with this cDNA, previously modified for boost translation by codon optimization, resulted in the synthesis of an approximately 52 kDa protein which degraded [(14)C]Glc(3)-Man(9)-GlcNAc(2) efficiently, indicating that the catalytic domain of the enzyme folds correctly under cell-free conditions. Transfection of the endo-alpha1,2-mannosidase wild-type cDNA into COS 1 cells resulted in a moderate (approximately 1.5-fold) but reproducible increase of activity compared with control cells, whereas >18-fold increase in activity was measured after expression of a chimera containing green-fluorescent-protein (GFP) attached to the N-terminus of the endo-alpha1,2-mannosidase polypeptide. This, together with the observation that GFP-endo-alpha1,2-mannosidase is expressed as a Golgi-resident type II protein, points to enzyme-specific parameters directing folding and membrane anchoring, as well as Golgi-targeting, not being affected by fusion of GFP to the endo-alpha1,2-mannosidase N-terminus.
Assuntos
Fibroblastos/fisiologia , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , alfa-Manosidase/biossíntese , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Clonagem Molecular , Fibroblastos/citologia , Biblioteca Gênica , Humanos , Dados de Sequência Molecular , alfa-Manosidase/genéticaRESUMO
Glucosidase I is an endoplasmic reticulum (ER) type II membrane enzyme that cleaves the distal alpha1,2-glucose of the asparagine-linked GlcNAc2-Man9-Glc3 precursor. To identify sequence motifs responsible for ER localization, we prepared a protein chimera by transferring the cytosolic and transmembrane domain of glucosidase I to the luminal domain of Golgi-Man9-mannosidase. The GIM9 hybrid was overexpressed in COS 1 cells as an ER-resident protein that displayed alpha1,2-mannosidase activity, excluding the possibility that the glucosidase I-specific domains interfere with folding of the Man9-mannosidase catalytic domain. After substitution of the Args in position 7, 8, or 9 relative to the N-terminus by leucine, the GIM9 mutants were transported to the cell surface indicating that the (Arg)3 sequence functions as an ER-targeting motif. Cell surface expression was also observed after substitution of Arg-7 or Arg-8 but not Arg-9 in GIM9 by either lysine or histidine. Thus the side chain structure, including its positive charge, appears to be essential for signal function. Analysis of the N-linked glycans suggests that the (Arg)3 sequence mediates ER localization through Golgi-to-ER retrograde transport. Glucosidase I remained localized in the ER after truncation or mutation of the N-terminal (Arg)3 signal, in contrast to comparable GIM9 mutants. ER localization was also observed with an M9GI chimera consisting of the cytosolic and transmembrane domain of Man9-mannosidase and the glucosidase I catalytic domain. ER-specific targeting information must therefore be provided by sequence motifs contained within the glucosidase I luminal domain. This structural information appears to direct ER localization by retention rather than by retrieval, as concluded from N-linked Man9-GlcNAc2 being the major glycan released from the wild-type enzyme.
Assuntos
Arginina/metabolismo , Retículo Endoplasmático/metabolismo , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Arginina/genética , Células COS , Catálise , Citosol/enzimologia , Humanos , Dados de Sequência Molecular , Mutação , Sinais Direcionadores de Proteínas/genética , Estrutura Terciária de Proteína , Transporte Proteico , Homologia de Sequência de Aminoácidos , Transfecção , alfa-Glucosidases/genéticaRESUMO
Recently, we reported a novel congenital disorder of glycosylation (CDG-IIb) caused by severe deficiency of the glucosidase I. The enzyme cleaves the alpha1,2-glucose residue from the asparagine-linked Glc(3)-Man(9)-GlcNAc(2) precursor, which is crucial for oligosaccharide maturation. The patient suffering from this disease was compound-heterozygous for two mutations in the glucosidase I gene, a T-->C transition in the paternal allele and a G-->C transition in the maternal allele. This gives rise in the glucosidase I polypeptide to the substitution of Arg486 by Thr and Phe652 by Leu, respectively. Kinetic studies using detergent extracts from cultured fibroblasts showed that the glucosidase I activity in the patient's cells was < 1% of the control level, with intermediate values in the parental cells. No significant differences in the activities of other processing enzymes, including oligosaccharyltransferase, glucosidase II, and Man(9)-mannosidase, were observed. By contrast, the patient's fibroblasts displayed a two- to threefold higher endo-alpha1,2-mannosidase activity, associated with an increased level of enzyme-specific mRNA-transcripts. This points to the lack of glucosidase I activity being compensated for, to some extent, by increase in the activity of the pathway involving endo-alpha1,2-mannosidase; this would also explain the marked urinary excretion of Glc(3)-Man. Comparative analysis of [(3)H]mannose-labeled N-glycoproteins showed that, despite the dramatically reduced glucosidase I activity, the bulk of the N-linked carbohydrate chains (>80%) in the patient's fibroblasts appeared to have been processed correctly, with only approximately 16% of the N-glycans being arrested at the Glc(3)-Man(9-7)-GlcNAc(2) stage. These structural and enzymatic data provide a reasonable basis for the observation that the sialotransferrin pattern, which frequently depends on the type of glycosylation disorder, appears to be normal in the patient. The human glucosidase I gene contains four exons separated by three introns with exon-4 encoding for the large 64-kDa catalytic domain of the enzyme. The two base mutations giving rise to substitution of Arg486 by Thr and Phe652 by Leu both reside in exon-4, consistent with their deleterious effect on enzyme activity. Incorporation of either mutation into wild-type glucosidase I resulted in the overexpression of enzyme mutants in COS 1 cells displaying no measurable catalytic activity. The Phe652Leu but not the Arg486Thr protein mutant showed a weak binding to a glucosidase I-specific affinity resin, indicating that the two amino acids affect polypeptide folding and active site formation differently.