Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 193(4): 456-473, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36657718

RESUMO

Poorly differentiated (PD) chordoma, a rare, aggressive tumor originating from notochordal tissue, shows loss of SMARCB1 expression, a core component of the Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes. To determine the impact of SMARCB1 re-expression on cell growth and gene expression, two SMARCB1-negative PD chordoma cell lines with an inducible SMARCB1 expression system were generated. After 72 hours of induction of SMARCB1, both SMARCB1-negative PD chordoma cell lines continued to proliferate. This result contrasted with those observed with SMARCB1-negative rhabdoid cell lines in which SMARCB1 re-expression caused the rapid inhibition of growth. We found that the lack of growth inhibition may arise from the loss of CDKN2A (p16INK4A) expression in PD chordoma cell lines. RNA-sequencing of cell lines after SMARCB1 re-expression showed a down-regulation for rRNA and RNA processing as well as metabolic processing and increased expression of genes involved in cell adhesion, cell migration, and development. Taken together, these data establish that SMARCB1 re-expression in PD chordomas alters the repertoire of SWI/SNF complexes, perhaps restoring those associated with cellular differentiation. These novel findings support a model in which SMARCB1 inactivation blocks the conversion of growth-promoting SWI/SNF complexes to differentiation-inducing ones, and they implicate SMARCB1 loss as a late event in tumorigenic progression. Importantly, the absence of growth inhibition after SMARCB1 restoration creates a unique opportunity to identify therapeutic vulnerabilities.


Assuntos
Cordoma , Humanos , Cordoma/genética , Cordoma/patologia , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Carcinogênese , Proteína SMARCB1/genética
2.
Pharmacol Res Perspect ; 9(5): e00859, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34476911

RESUMO

Precisely controlled synaptic glutamate concentration is essential for the normal function of the N-methyl D-aspartate (NMDA) receptors. Atypical fluctuations in synaptic glutamate homeostasis lead to aberrant NMDA receptor activity that results in the pathogenesis of neurological and psychiatric disorders. Therefore, glutamate concentration-dependent NMDA receptor modulators would be clinically useful agents with fewer on-target adverse effects. In the present study, we have characterized a novel compound (CNS4) that potentiates NMDA receptor currents based on glutamate concentration. This compound alters glutamate potency and exhibits no voltage-dependent effect. Patch-clamp electrophysiology recordings confirmed agonist concentration-dependent changes in maximum inducible currents. Dynamic Ca2+ and Na+ imaging assays using rat brain cortical, striatal and cerebellar neurons revealed CNS4 potentiated ion influx through native NMDA receptor activity. Overall, CNS4 is novel in chemical structure, mechanism of action and agonist concentration-biased allosteric modulatory effect. This compound or its future analogs will serve as useful candidates to develop drug-like compounds for the treatment of treatment-resistant schizophrenia and major depression disorders associated with hypoglutamatergic neurotransmission.


Assuntos
Ácido Glutâmico/metabolismo , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Regulação Alostérica , Animais , Benzamidas/farmacologia , Cerebelo/citologia , Córtex Cerebral/citologia , Corpo Estriado/citologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Neurônios/metabolismo , Imagem Óptica , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Xenopus laevis
3.
Eur J Pharmacol ; 844: 216-224, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30553788

RESUMO

N-methyl D-aspartate (NMDA) receptors play a crucial role in normal brain function, pathogenesis of neurodegenerative and psychiatric disorders. Functional tetra-heteromeric NMDA receptor contains two obligatory GluN1 subunits and two identical or different non-GluN1 subunits that evolve from six different genes including four GluN2 (A-D) and two GluN3 (A-B) subunits. Since NMDA receptors confer varied physiological properties and spatiotemporal distributions in the brain, pharmacological agents that target NMDA receptors with specific GluN2 subunits have significant potential for therapeutic applications. In the present work, by using electrophysiology techniques, we have studied the role of ligand binding domain (LBD) interactions in determining the effect of well-characterized pharmacological agents including agonists, competitive antagonists, channel blockers and an allosteric modulator. Remarkably, point mutations at the distal end (site-II&III) of GluN1 LBD interface increased memantine potency up to sevenfold when co-expressed with wild type GluN2A receptors but exhibit no effect on Mg2+ activity. Conversely, mutations at the proximal end (site-I) of the LBD interface did not affect the memantine but altered Zn2+ and Mg2+ potency towards opposite directions. These results indicate that GluN1/2A LBD interface interactions play a key role in determining channel function. Further, subtle changes in LBD interaction can be readily translated to the downstream extracellular vestibule of channel pore to adopt a conformation that may affect memantine, Zn2+ and Mg2+ binding. Further studies on NMDA receptor LBD to transmembrane domain signal propagation mechanisms will help develop GluN2 subunit selective biomolecules that can be used for the treatment of neurological and psychiatric disorders.


Assuntos
Subunidades Proteicas/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Ligantes , Preparações Farmacêuticas/metabolismo , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA