Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 65(3): 275-84, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22207243

RESUMO

The growth and plasticity of engrafted human mesenchymal stem cells is regulated by external stimuli. Rosuvastatin (RSV) promotes myocardial neovascularization and limits myocardial remodeling in patients with chronic heart failure (CHF). While these non-lipid benefits may in part depend on the activation of stem cells, experimental evidence that RSV directly elicits vasculogenic differentiation of human mesenchymal stem cells is still lacking. We assessed whether RSV may drive a gene program of vascular commitment and the secretion of trophic mediators with antiapoptotic, angiogenic and antifibrotic activities in human mesenchymal stem cells from full-term placentas (FMhMSCs). With real-time RT-PCR, immunofluorescence, chemiluminescence, Western blot analysis, and in vitro vasculogenesis assays, we show that RSV enhanced expression of vascular endothelial growth factor (VEGF), kinase insert domain receptor (KDR), encoding a major VEGF receptor, hepatocyte growth factor (HGF), and platelet-derived growth factor-BB (PDGF-BB) in a time- and dose-dependent manner. GATA-4 and Nkx-2.5 transcription was not affected. RSV enhanced capillary-like formation in vitro, but capillary-embedded FMhMSCs lacked endothelial marker expression, suggesting a role of pericyte-like elements in tube formation. In HUVEC/FMhMSC cocultures, RSV increases PDGFRß expression in FMhMSCs, and enhanced capillary density and organizational efficiency, promoting a long-lasting survival of tubular networks. RSV also activated PI3K-Akt pathway; the vasculogenic effects of the statin were abrogated following PI3K inhibition by LY294002. In conclusion, RSV-induced increase in capillary formation was dependent on VEGF and KDR. RSV promotes the activation of paracrine signals for vascular commitment of FMhMSCs through PI3K-Akt pathway. This observation may pave the way to the use of RSV as a pharmacological enhancer of stem cell potential for cardiovascular cell therapy.


Assuntos
Indutores da Angiogênese/farmacologia , Fluorbenzenos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Placenta/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Gravidez , Rosuvastatina Cálcica , Transdução de Sinais/efeitos dos fármacos
2.
J Biol Chem ; 285(13): 9949-9961, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20097747

RESUMO

Possible cardiac repair by adult stem cell transplantation is currently hampered by poor cell viability and delivery efficiency, uncertain differentiating fate in vivo, the needs of ex vivo cell expansion, and consequent delay in transplantation after the onset of heart attack. By the aid of magnetic resonance imaging, positron emission tomography, and immunohistochemistry, we show that injection of a hyaluronan mixed ester of butyric and retinoic acid (HBR) into infarcted rat hearts afforded substantial cardiovascular repair and recovery of myocardial performance. HBR restored cardiac [(18)F]fluorodeoxyglucose uptake and increased capillary density and led to the recruitment of endogenous Stro-1-positive stem cells. A terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay demonstrated that HBR-treated hearts exhibited a decrease in the number of apoptotic cardiomyocytes. In isolated rat cardiomyocytes and Stro-1 stem cells, HBR enhanced the transcription of vascular endothelial growth factor, hepatocyte growth factor, kdr, akt, and pim-1. HBR also increased the secretion of vascular endothelial growth factor and hepatocyte growth factor, suggesting that the mixed ester may have recruited both myocardial and Stro-1 cells also. An increase in capillarogenesis was induced in vitro with medium obtained from HBR-exposed cells. In the infarcted myocardium, HBR injection increased histone H4 acetylation significantly. Acetyl-H4 immunoreactivity increased in rat cardiomyocytes and Stro-1 cells exposed to HBR, compared with untreated cells. In conclusion, efficient cardiac regenerative therapy can be afforded by HBR without the need of stem cell transplantation or vector-mediated gene delivery.


Assuntos
Ácido Butírico/química , Ácido Hialurônico/química , Miocárdio/citologia , Transplante de Células-Tronco/métodos , Tretinoína/química , Animais , Sobrevivência Celular , Fluordesoxiglucose F18/metabolismo , Técnicas de Transferência de Genes , Imageamento por Ressonância Magnética/métodos , Masculino , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Neovascularização Patológica , Tomografia por Emissão de Pósitrons/métodos , Ratos , Ratos Wistar , Tretinoína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA