Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JBMR Plus ; 8(2): ziad012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38505533

RESUMO

The fracture behavior of bone is critically important for evaluating its mechanical competence and ability to resist fractures. Fracture toughness is an intrinsic material property that quantifies a material's ability to withstand crack propagation under controlled conditions. However, properly conducting fracture toughness testing requires the access to calibrated mechanical load frames and the destructive testing of bone samples, and therefore fracture toughness tests are clinically impractical. Impact microindentation mimicks certain aspects of fracture toughness measurements, but its relationship with fracture toughness remains unknown. In this study, we aimed to compare measurements of notched fracture toughness and impact microindentation in fresh and boiled bovine bone. Skeletally mature bovine bone specimens (n = 48) were prepared, and half of them were boiled to denature the organic matrix, while the other half remained preserved in frozen conditions. All samples underwent a notched fracture toughness test to determine their resistance to crack initiation (KIC) and an impact microindentation test using the OsteoProbe to obtain the Bone Material Strength index (BMSi). Boiling the bone samples increased the denatured collagen content, while mineral density and porosity remained unaffected. The boiled bones also showed significant reduction in both KIC (P < .0001) and the average BMSi (P < .0001), leading to impaired resistance of bone to crack propagation. Remarkably, the average BMSi exhibited a high correlation with KIC (r = 0.86; P < .001). A ranked order difference analysis confirmed the excellent agreement between the 2 measures. This study provides the first evidence that impact microindentation could serve as a surrogate measure for bone fracture behavior. The potential of impact microindentation to assess bone fracture resistance with minimal sample disruption could offer valuable insights into bone health without the need for cumbersome testing equipment and sample destruction.

2.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37609257

RESUMO

The fracture behavior of bone is critically important for assessing its mechanical competence and ability to resist fractures. Fracture toughness, which quantifies a material's resistance to crack propagation under controlled geometry, is regarded as the gold standard for evaluating a material's resistance to fracture. However properly conducting this test requires access to calibrated mechanical load frames the destruction of the bone samples, making it impractical for obtaining clinical measurement of bone fracture. Impact microindentation offers a potential alternative by mimicking certain aspects of fracture toughness measurements, but its relationship with mechanistic fracture toughness remains unknown. In this study, we aimed to compare measurements of notched fracture toughness and impact microindentation in fresh and boiled bovine bone. Skeletally mature bovine bone specimens (n=48) were prepared, and half of them were boiled to denature the organic matrix, while the other half remained preserved in frozen conditions. Notched fracture toughness tests were conducted on all samples to determine Initiation toughness (KIC), and an impact microindentation test using the OsteoProbe was performed to obtain the Bone Material Strength index. Boiling the bone samples resulted increased the denatured collagen without affecting mineral density or porosity. The boiled bones also showed significant reduction in both KIC (p < 0.0001) and the average Bone Material Strength index (p < 0.0001), leading to impaired resistance of bone to crack propagation. Remarkably, the average Bone Material Strength index exhibited a high correlation with KIC (r = 0.86; p < 0.001). The ranked order difference analysis confirmed excellent agreement between the two measures. This study provides the first evidence that impact microindentation could serve as a surrogate measure for bone fracture behavior. The potential of impact microindentation to non-destructively assess bone fracture resistance could offer valuable insights into bone health without the need for elaborate testing equipment and sample destruction.

3.
J Bone Miner Res ; 38(7): 1032-1042, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37191221

RESUMO

The observed increased risk of fracture after cancer radiation therapy is presumably due to a radiation-induced reduction in whole-bone strength. However, the mechanisms for impaired strength remain unclear, as the increased fracture risk is not fully explained by changes in bone mass. To provide insight, a small animal model was used to determine how much of this whole-bone weakening effect for the spine is attributable to changes in bone mass, structure, and material properties of the bone tissue and their relative effects. Further, because women have a greater risk of fracture after radiation therapy than men, we investigated if sex had a significant influence on bone's response to irradiation. Fractionated in vivo irradiation (10 × 3 Gy) or sham irradiation (0 Gy) was administered daily to the lumbar spine in twenty-seven 17-week-old Sprague-Dawley rats (n = 6-7/sex/group). Twelve weeks after final treatment, animals were euthanized, and lumbar vertebrae (L4 and L5 ) were isolated. Using a combination of biomechanical testing, micro-CT-based finite element analysis, and statistical regression analysis, we separated out the effect of mass, structural, and tissue material changes on vertebral strength. Compared with the sham group (mean ± SD strength = 420 ± 88 N), the mean strength of the irradiated group was lower by 28% (117 N/420 N, p < 0.0001). Overall, the response of treatment did not differ with sex. By combining results from both general linear regression and finite element analyses, we calculated that mean changes in bone mass, structure, and material properties of the bone tissue accounted for 56% (66 N/117 N), 20% (23 N/117 N), and 24% (28 N/117 N), respectively, of the overall change in strength. As such, these results provide insight into why an elevated clinical fracture risk for patients undergoing radiation therapy is not well explained by changes in bone mass alone. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Densidade Óssea , Fraturas Ósseas , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Densidade Óssea/fisiologia , Osso e Ossos , Vértebras Lombares , Microtomografia por Raio-X
4.
J Foot Ankle Res ; 16(1): 6, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782282

RESUMO

BACKGROUND: In people with diabetes (DM) and peripheral neuropathy (PN), loss of bone mineral density (BMD) in the tarsals and metatarsals contribute to foot complications; however, changes in BMD of the calcaneal bone is most commonly reported. This study reports rate of change in BMD of all the individual bones in the foot, in participants with DM and PN. Our aim was to investigate whether the rate of BMD change is similar across all the bones of the foot. METHODS: Participants with DM and PN (n = 60) were included in this longitudinal cohort study. Rate of BMD change of individual bones was monitored using computed tomography at baseline and 6 months, 18 months, and 3-4 years from baseline. Personal factors (age, sex, medication use, step count, sedentary time, and PN severity) were assessed. A random coefficient model estimated rate of change of BMD in all bones and Pearson correlation tested relationships between personal factor variables and rate of BMD change. RESULTS: Mean and calcaneal BMD decreased over the study period (p < 0.05). Individual tarsal and metatarsal bones present a range of rate of BMD change (-0.3 to -0.9%/year) but were not significantly different than calcaneal BMD change. Only age showed significant correlation with BMD and rate of BMD change. CONCLUSION: The rate of BMD change did not significantly differ across different foot bones at the group level in people with DM and PN without foot deformity. Asymmetric BMD loss between individual bones of the foot and aging may be indicators of pathologic changes and require further investigation. TRIAL REGISTRATION: Metatarsal Phalangeal Joint Deformity Progression-R01. Registered 25 November 2015, https://clinicaltrials.gov/ct2/show/NCT02616263.


Assuntos
Diabetes Mellitus , Ossos do Metatarso , Doenças do Sistema Nervoso Periférico , Adulto , Humanos , Ossos do Metatarso/diagnóstico por imagem , Estudos Longitudinais , Densidade Óssea , Metatarso
5.
J Diabetes Sci Technol ; 17(1): 89-98, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35652696

RESUMO

Diabetes mellitus (DM) is associated with musculoskeletal complications-including tendon dysfunction and injury. Patients with DM show altered foot and ankle mechanics that have been attributed to tendon dysfunction as well as impaired recovery post-tendon injury. Despite the problem of DM-related tendon complications, treatment guidelines specific to this population of individuals are lacking. DM impairs tendon structure, function, and healing capacity in tendons throughout the body, but the Achilles tendon is of particular concern and most studied in the diabetic foot. At macroscopic levels, asymptomatic, diabetic Achilles tendons may show morphological abnormalities such as thickening, collagen disorganization, and/or calcific changes at the tendon enthesis. At smaller length scales, DM affects collagen sliding and discrete plasticity due to glycation of collagen. However, how these alterations translate to mechanical deficits observed at larger length scales is an area of continued investigation. In addition to dysfunction of the extracellular matrix, tendon cells such as tenocytes and tendon stem/progenitor cells show significant abnormalities in proliferation, apoptosis, and remodeling capacity in the presence of hyperglycemia and advanced glycation end-products, thus contributing to the disruption of tendon homeostasis and healing. Improving our understanding of the effects of DM on tendons-from molecular pathways to patients-will progress toward targeted therapies in this group at high risk of foot and ankle morbidity.


Assuntos
Tendão do Calcâneo , Diabetes Mellitus , Pé Diabético , Hiperglicemia , Humanos , Colágeno/metabolismo , Tendão do Calcâneo/lesões , Tendão do Calcâneo/metabolismo , Cicatrização
6.
Bone Rep ; 17: 101634, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36389626

RESUMO

Chemical crosslinks known as advanced glycation end-products (AGEs) are associated with increased bone fracture risk and deteriorated bone mechanical properties. However, measurement of bone AGEs via ex vivo and in vitro methods has been limited to quantification of bulk fluorescent AGEs (fAGEs) and pentosidine only, which is a crosslinking fluorescent AGE. However, a non-crosslinking and non-fluorescent AGE such as carboxymethyl-lysine (CML) is found to be 40-100 times higher in quantity than pentosidine, but only one previous study has reported it in cortical bone, and one study reported it in trabecular bone. In our study, we wanted to investigate if accumulation of CML differs in cortical and trabecular compartments and if they are more strongly associated with bone mechanical properties than with fAGEs. We hypothesized that CML and fAGEs level would be higher in the trabecular compartment and show negative correlations to mechanical properties in cortical and trabecular bone. We obtained human cadaveric cortical and trabecular bone specimens, induced the formation of AGEs via the established in vitro ribosylation method, imaged specimens by microcomputed tomography to assess specimen geometry and microarchitecture, and mechanically tested cortical specimens by cyclic reference point indentation and fracture toughness tests and trabecular specimens by compression tests, followed by measurement of fAGEs and CML. fAGEs were 22 % higher in cortical bone (687 ± 44.8 ng Q/mg collagen) compared to trabecular bone (859 ± 317.1 ng Q/mg collagen), whereas CML levels were found to be 148 % higher in trabecular bone (6189.9 ± 866 ng/mg of protein) compared to cortical bone (924.6 ± 576.3 ng/mg of protein). Pooling the specimens from both the control and ribose groups, Spearman correlation analysis indicated that CML levels, but not fAGEs, are moderately associated with cortical porosity (r = +0.505, p ≤ 0.05) and mechanical properties such indentation depth (r = +0.460, p ≤ 0.05), total indentation depth (r = +0.440, p ≤ 0.05), and average energy dissipated (r = +0.465, p ≤ 0.05) in cortical bone. fAGEs showed a trend towards negative association with crack propagation toughness in cortical bone (r = -0.365, p = 0.055). No significant correlations were observed between CML and microarchitecture or mechanical properties in trabecular bone. CML levels were also associated with fAGEs in cortical bone (r = +0.596, p ≤ 0.05) but not in trabecular bone. Our preliminary findings indicate that CML, a non-crosslinking AGE, may affect bone material and mechanical properties differently than bulk fluorescent AGEs, given the higher accumulation of CML in each bone compartment. This study provides direction to future studies to quantify crosslinking and non-crosslinking AGEs separately as their effect on material and mechanical properties may be different and it would help identify better biomarkers for bone strength prediction.

7.
J Orthop Res ; 38(5): 972-983, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31793028

RESUMO

Advanced glycation end-products (AGEs) have been suggested to contribute to bone fragility in type 2 diabetes (T2D). AGEs can be induced through in vitro sugar incubations but there is limited data on the effect of total fluorescent AGEs on mechanical properties of human cortical bone, which may have altered characteristics in T2D. Thus, to examine the effect of AGEs on bone directly in T2D patients with uncontrolled sugar levels, it is essential to first understand the fundamental mechanisms by studying the effects of controlled in vitro-induced AGEs on cortical bone mechanical behavior. Here, human cortical bone specimens from female cadaveric tibias (ages 57-87) were incubated in an in vitro 0.6 M ribose or vehicle solution (n = 20/group) for 10 days at 37°C, their mechanical properties were assessed by microindentation and fracture toughness tests, and induced AGE levels were quantified through a fluorometric assay. Results indicated that ribose-incubated bone had significantly more AGEs (+81%, p ≤ 0.005), lower elastic modulus assessed by traditional microindentation, and lower fracture toughness compared with vehicle controls. Furthermore, based on pooled data, increased AGEs were significantly correlated with deteriorated mechanical properties. The findings presented here show that the accumulation of AGEs allows for lower stiffness and increased ability to initiate a crack in human cortical bone. Statement of clinical significance: High sugar levels as in T2D results in deteriorated bone quality via AGE accumulation with a consequent weakening in bone's mechanical integrity. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:972-983, 2020.


Assuntos
Osso e Ossos/efeitos dos fármacos , Módulo de Elasticidade/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Ribose/toxicidade , Idoso , Idoso de 80 Anos ou mais , Osso e Ossos/metabolismo , Osso e Ossos/ultraestrutura , Feminino , Humanos , Pessoa de Meia-Idade
8.
Curr Osteoporos Rep ; 17(5): 291-300, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31392668

RESUMO

PURPOSE OF REVIEW: There is ample evidence that patients with type 2 diabetes (T2D) have increased risk of fracture even though they have normal or high bone mineral density. As a result, poor bone quality is suggested to contribute to skeletal fragility in this population. Thus, our goal was to conduct a comprehensive literature review to understand how bone quality components are altered in T2D and their effects on bone biomechanics and fracture risk. RECENT FINDINGS: T2D does affect bone quality via alterations in bone microarchitecture, organic matrix, and cellular behavior. Further, studies indicate that bone biomechanical properties are generally deteriorated in T2D, but there are few reports in patients. Additional work is needed to better understand molecular and cellular mechanisms that contribute to skeletal fragility in T2D. This knowledge can contribute to the development of improved diagnostic tools and drug targets to for improved quality of life for those with T2D.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Fraturas Ósseas/etiologia , Fenômenos Biomecânicos , Densidade Óssea , Humanos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA