Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38490196

RESUMO

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Assuntos
Encéfalo , Interferon Tipo I , Microglia , Animais , Camundongos , Interferon Tipo I/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Peixe-Zebra , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento
2.
bioRxiv ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36993292

RESUMO

The innate immune system plays essential roles in brain synaptic development, and immune dysregulation is implicated in neurodevelopmental diseases. Here we show that a subset of innate lymphocytes (group 2 innate lymphoid cells, ILC2s) is required for cortical inhibitory synapse maturation and adult social behavior. ILC2s expanded in the developing meninges and produced a surge of their canonical cytokine Interleukin-13 (IL-13) between postnatal days 5-15. Loss of ILC2s decreased cortical inhibitory synapse numbers in the postnatal period where as ILC2 transplant was sufficient to increase inhibitory synapse numbers. Deletion of the IL-4/IL-13 receptor (Il4ra) from inhibitory neurons phenocopied the reduction inhibitory synapses. Both ILC2 deficient and neuronal Il4ra deficient animals had similar and selective impairments in adult social behavior. These data define a type 2 immune circuit in early life that shapes adult brain function.

3.
bioRxiv ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35233577

RESUMO

Microglia are brain resident phagocytes that can engulf synaptic components and extracellular matrix as well as whole neurons. However, whether there are unique molecular mechanisms that regulate these distinct phagocytic states is unknown. Here we define a molecularly distinct microglial subset whose function is to engulf neurons in the developing brain. We transcriptomically identified a cluster of Type I interferon (IFN-I) responsive microglia that expanded 20-fold in the postnatal day 5 somatosensory cortex after partial whisker deprivation, a stressor that accelerates neural circuit remodeling. In situ, IFN-I responsive microglia were highly phagocytic and actively engulfed whole neurons. Conditional deletion of IFN-I signaling (Ifnar1fl/fl) in microglia but not neurons resulted in dysmorphic microglia with stalled phagocytosis and an accumulation of neurons with double strand DNA breaks, a marker of cell stress. Conversely, exogenous IFN-I was sufficient to drive neuronal engulfment by microglia and restrict the accumulation of damaged neurons. IFN-I deficient mice had excess excitatory neurons in the developing somatosensory cortex as well as tactile hypersensitivity to whisker stimulation. These data define a molecular mechanism through which microglia engulf neurons during a critical window of brain development. More broadly, they reveal key homeostatic roles of a canonical antiviral signaling pathway in brain development.

4.
Glia ; 71(3): 588-601, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36377669

RESUMO

Multiple sclerosis (MS) is the most common inflammatory, demyelinating and neurodegenerative disease of the central nervous system in young adults. Chronic-relapsing experimental autoimmune encephalomyelitis (crEAE) in Biozzi ABH mice is an experimental model of MS. This crEAE model is characterized by an acute phase with severe neurological disability, followed by remission of disease, relapse of neurological disease and remission that eventually results in a chronic progressive phase that mimics the secondary progressive phase (SPEAE) of MS. In both MS and SPEAE, the role of microglia is poorly defined. We used a crEAE model to characterize microglia in the different phases of crEAE phases using morphometric and RNA sequencing analyses. At the initial, acute inflammation phase, microglia acquired a pro-inflammatory phenotype. At the remission phase, expression of standard immune activation genes was decreased while expression of genes associated with lipid metabolism and tissue remodeling were increased. Chronic phase microglia partially regain inflammatory gene sets and increase expression of genes associated with proliferation. Together, the data presented here indicate that microglia obtain different features at different stages of crEAE and a particularly mixed phenotype in the chronic stage. Understanding the properties of microglia that are present at the chronic phase of EAE will help to understand the role of microglia in secondary progressive MS, to better aid the development of therapies for this phase of the disease.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Doenças Neurodegenerativas , Camundongos , Animais , Esclerose Múltipla/genética , Microglia/metabolismo , Esclerose Múltipla Crônica Progressiva/genética , Camundongos Biozzi , Encefalomielite Autoimune Experimental/metabolismo , Expressão Gênica , Modelos Animais de Doenças
5.
J Exp Med ; 220(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36520518

RESUMO

Microglia are critical regulators of brain development that engulf synaptic proteins during postnatal synapse remodeling. However, the mechanisms through which microglia sense the brain environment are not well defined. Here, we characterized the regulatory program downstream of interleukin-33 (IL-33), a cytokine that promotes microglial synapse remodeling. Exposing the developing brain to a supraphysiological dose of IL-33 altered the microglial enhancer landscape and increased binding of stimulus-dependent transcription factors including AP-1/FOS. This induced a gene expression program enriched for the expression of pattern recognition receptors, including the scavenger receptor MARCO. CNS-specific deletion of IL-33 led to increased excitatory/inhibitory synaptic balance, spontaneous absence-like epileptiform activity in juvenile mice, and increased seizure susceptibility in response to chemoconvulsants. We found that MARCO promoted synapse engulfment, and Marco-deficient animals had excess thalamic excitatory synapses and increased seizure susceptibility. Taken together, these data define coordinated epigenetic and functional changes in microglia and uncover pattern recognition receptors as potential regulators of postnatal synaptic refinement.


Assuntos
Interleucina-33 , Microglia , Animais , Camundongos , Microglia/metabolismo , Interleucina-33/metabolismo , Sinapses/metabolismo , Encéfalo/metabolismo , Convulsões/metabolismo , Camundongos Endogâmicos C57BL
6.
Sci Transl Med ; 14(652): eabj4310, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35857628

RESUMO

Inflammatory processes induced by brain injury are important for recovery; however, when uncontrolled, inflammation can be deleterious, likely explaining why most anti-inflammatory treatments have failed to improve neurological outcomes after brain injury in clinical trials. In the thalamus, chronic activation of glial cells, a proxy of inflammation, has been suggested as an indicator of increased seizure risk and cognitive deficits that develop after cortical injury. Furthermore, lesions in the thalamus, more than other brain regions, have been reported in patients with viral infections associated with neurological deficits, such as SARS-CoV-2. However, the extent to which thalamic inflammation is a driver or by-product of neurological deficits remains unknown. Here, we found that thalamic inflammation in mice was sufficient to phenocopy the cellular and circuit hyperexcitability, enhanced seizure risk, and disruptions in cortical rhythms that develop after cortical injury. In our model, down-regulation of the GABA transporter GAT-3 in thalamic astrocytes mediated this neurological dysfunction. In addition, GAT-3 was decreased in regions of thalamic reactive astrocytes in mouse models of cortical injury. Enhancing GAT-3 in thalamic astrocytes prevented seizure risk, restored cortical states, and was protective against severe chemoconvulsant-induced seizures and mortality in a mouse model of traumatic brain injury, emphasizing the potential of therapeutically targeting this pathway. Together, our results identified a potential therapeutic target for reducing negative outcomes after brain injury.


Assuntos
Lesões Encefálicas , COVID-19 , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Inflamação/patologia , Camundongos , Polímeros , Roedores/metabolismo , SARS-CoV-2 , Convulsões , Tálamo/metabolismo , Tálamo/patologia
7.
Nat Commun ; 12(1): 5916, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625548

RESUMO

Microglia are brain resident macrophages that play vital roles in central nervous system (CNS) development, homeostasis, and pathology. Microglia both remodel synapses and engulf apoptotic cell corpses during development, but whether unique molecular programs regulate these distinct phagocytic functions is unknown. Here we identify a molecularly distinct microglial subset in the synapse rich regions of the zebrafish (Danio rerio) brain. We found that ramified microglia increased in synaptic regions of the midbrain and hindbrain between 7 and 28 days post fertilization. In contrast, microglia in the optic tectum were ameboid and clustered around neurogenic zones. Using single-cell mRNA sequencing combined with metadata from regional bulk sequencing, we identified synaptic-region associated microglia (SAMs) that were highly enriched in the hindbrain and expressed multiple candidate synapse modulating genes, including genes in the complement pathway. In contrast, neurogenic associated microglia (NAMs) were enriched in the optic tectum, had active cathepsin activity, and preferentially engulfed neuronal corpses. These data reveal that molecularly distinct phagocytic programs mediate synaptic remodeling and cell engulfment, and establish the zebrafish hindbrain as a model for investigating microglial-synapse interactions.


Assuntos
Mesencéfalo/citologia , Microglia/citologia , Neurogênese/genética , Rombencéfalo/citologia , Colículos Superiores/citologia , Transcriptoma , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/imunologia , Catepsina B/genética , Catepsina B/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Mesencéfalo/crescimento & desenvolvimento , Mesencéfalo/imunologia , Microglia/imunologia , Neurogênese/imunologia , Neurônios/citologia , Neurônios/imunologia , Fagocitose , Rombencéfalo/crescimento & desenvolvimento , Rombencéfalo/imunologia , Análise de Célula Única , Colículos Superiores/crescimento & desenvolvimento , Colículos Superiores/imunologia , Sinapses/imunologia , Sinapses/metabolismo , Sinapses/ultraestrutura , Peixe-Zebra , Proteínas de Peixe-Zebra/imunologia
8.
Elife ; 102021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652270

RESUMO

Peripheral nerve injury-induced neuropathic pain is a chronic and debilitating condition characterized by mechanical hypersensitivity. We previously identified microglial activation via release of colony-stimulating factor 1 (CSF1) from injured sensory neurons as a mechanism contributing to nerve injury-induced pain. Here, we show that intrathecal administration of CSF1, even in the absence of injury, is sufficient to induce pain behavior, but only in male mice. Transcriptional profiling and morphologic analyses after intrathecal CSF1 showed robust immune activation in male but not female microglia. CSF1 also induced marked expansion of lymphocytes within the spinal cord meninges, with preferential expansion of regulatory T-cells (Tregs) in female mice. Consistent with the hypothesis that Tregs actively suppress microglial activation in females, Treg deficient (Foxp3DTR) female mice showed increased CSF1-induced microglial activation and pain hypersensitivity equivalent to males. We conclude that sexual dimorphism in the contribution of microglia to pain results from Treg-mediated suppression of microglial activation and pain hypersensitivity in female mice.


Assuntos
Fator Estimulador de Colônias de Macrófagos/genética , Microglia/metabolismo , Neuralgia/genética , Linfócitos T Reguladores/fisiologia , Animais , Feminino , Injeções Espinhais , Fator Estimulador de Colônias de Macrófagos/administração & dosagem , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Fatores Sexuais
10.
Glia ; 69(5): 1140-1154, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33332631

RESUMO

Astrocytes fulfil many functions in the central nervous system (CNS), including contribution to the blood brain barrier, synapse formation, and trophic support. In addition, they can mount an inflammatory response and are heterogeneous in morphology and function. To extensively characterize astrocyte subtypes, we FACS-isolated and gene expression profiled distinct astrocyte subtypes from three central nervous system regions; forebrain, hindbrain and spinal cord. Astrocyte subpopulations were separated based on GLAST/SLC1A3 and ACSA-2/ATP1B2 cell surface expression. The local brain environment proved key in establishing different transcriptional programs in astrocyte subtypes. Transcriptional differences between subtypes were also apparent in experimental autoimmune encephalomyelitis (EAE) mice, where these astrocyte subtypes showed distinct responses. While gene expression signatures associated with blood-brain barrier maintenance were lost, signatures involved in neuroinflammation and neurotoxicity were increased in spinal cord astrocytes, especially during acute disease stages. In chronic stages of EAE, this reactive astrocyte signature was slightly decreased, while obtaining a more proliferative profile, which might be relevant for glia scar formation and tissue regeneration. Morphological heterogeneity of astrocytes previously indicated the presence of astrocyte subtypes, and here we show diversity based on transcriptome variation associated with brain regions and differential responsiveness to a neuroinflammatory insult (EAE).


Assuntos
Proteínas de Transporte de Cátions , Encefalomielite Autoimune Experimental , Adenosina Trifosfatases , Animais , Astrócitos , Moléculas de Adesão Celular Neuronais , Encefalomielite Autoimune Experimental/genética , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Medula Espinal
11.
Nat Neurosci ; 23(11): 1444-1452, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32929245

RESUMO

The ventral hippocampus (vHPC) is a critical hub in networks that process emotional information. While recent studies have indicated that ventral CA1 (vCA1) projection neurons are functionally dissociable, the basic principles of how the inputs and outputs of vCA1 are organized remain unclear. Here, we used viral and sequencing approaches to define the logic of the extended vCA1 circuit. Using high-throughput sequencing of genetically barcoded neurons (MAPseq) to map the axonal projections of thousands of vCA1 neurons, we identify a population of neurons that simultaneously broadcast information to multiple areas known to regulate the stress axis and approach-avoidance behavior. Through molecular profiling and viral input-output tracing of vCA1 projection neurons, we show how neurons with distinct projection targets may differ in their inputs and transcriptional signatures. These studies reveal new organizational principles of vCA1 that may underlie its functional heterogeneity.


Assuntos
Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/metabolismo
12.
Cell ; 182(2): 388-403.e15, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32615087

RESUMO

Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity. Loss of neuronal IL-33 or the microglial IL-33 receptor leads to impaired spine plasticity, reduced newborn neuron integration, and diminished precision of remote fear memories. Memory precision and neuronal IL-33 are decreased in aged mice, and IL-33 gain of function mitigates age-related decreases in spine plasticity. We find that neuronal IL-33 instructs microglial engulfment of the extracellular matrix (ECM) and that its loss leads to impaired ECM engulfment and a concomitant accumulation of ECM proteins in contact with synapses. These data define a cellular mechanism through which microglia regulate experience-dependent synapse remodeling and promote memory consolidation.


Assuntos
Matriz Extracelular/metabolismo , Microglia/fisiologia , Plasticidade Neuronal/fisiologia , Envelhecimento , Animais , Medo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Transdução de Sinais
13.
Trends Neurosci ; 43(3): 144-154, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32044129

RESUMO

Healthy central nervous system (CNS) development and function require an intricate and balanced bidirectional communication between neurons and glia cells. In this review, we discuss the complementary roles of astrocytes and microglia in building the brain, including in the formation and refinement of synapses. We discuss recent evidence demonstrating how these interactions are coordinated in the transition from healthy physiology towards disease and discuss known and potential molecular mechanisms that mediate this cellular crosstalk.


Assuntos
Astrócitos , Microglia , Humanos , Neuroglia , Neurônios , Sinapses
14.
Science ; 359(6381): 1269-1273, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29420261

RESUMO

Neuronal synapse formation and remodeling are essential to central nervous system (CNS) development and are dysfunctional in neurodevelopmental diseases. Innate immune signals regulate tissue remodeling in the periphery, but how this affects CNS synapses is largely unknown. Here, we show that the interleukin-1 family cytokine interleukin-33 (IL-33) is produced by developing astrocytes and is developmentally required for normal synapse numbers and neural circuit function in the spinal cord and thalamus. We find that IL-33 signals primarily to microglia under physiologic conditions, that it promotes microglial synapse engulfment, and that it can drive microglial-dependent synapse depletion in vivo. These data reveal a cytokine-mediated mechanism required to maintain synapse homeostasis during CNS development.


Assuntos
Astrócitos/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Interleucina-33/metabolismo , Microglia/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Neurogênese , Sinapses/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Homeostase , Interleucina-33/genética , Camundongos , Camundongos Knockout , Córtex Sensório-Motor/crescimento & desenvolvimento , Córtex Sensório-Motor/fisiologia , Tálamo/anormalidades
15.
Nat Neurosci ; 20(8): 1162-1171, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28671693

RESUMO

Microglia are essential for CNS homeostasis and innate neuroimmune function, and play important roles in neurodegeneration and brain aging. Here we present gene expression profiles of purified microglia isolated at autopsy from the parietal cortex of 39 human subjects with intact cognition. Overall, genes expressed by human microglia were similar to those in mouse, including established microglial genes CX3CR1, P2RY12 and ITGAM (CD11B). However, a number of immune genes, not identified as part of the mouse microglial signature, were abundantly expressed in human microglia, including TLR, Fcγ and SIGLEC receptors, as well as TAL1 and IFI16, regulators of proliferation and cell cycle. Age-associated changes in human microglia were enriched for genes involved in cell adhesion, axonal guidance, cell surface receptor expression and actin (dis)assembly. Limited overlap was observed in microglial genes regulated during aging between mice and humans, indicating that human and mouse microglia age differently.


Assuntos
Envelhecimento/fisiologia , Encéfalo/metabolismo , Antígeno CD11b/genética , Expressão Gênica/genética , Microglia/metabolismo , Axônios/metabolismo , Ciclo Celular/genética , Perfilação da Expressão Gênica , Humanos
16.
Methods Mol Biol ; 1559: 333-342, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28063055

RESUMO

Microglia are the innate immune cells of the central nervous system (CNS) and play an important role in the maintenance of tissue homeostasis, providing neural support and neuroprotection. Microglia constantly survey their environment and quickly respond to homeostatic perturbations. Microglia are increasingly implicated in neuropathological and neurodegenerative conditions, such as Alzheimer's disease, Parkinson's disease, and glioma progression. Here, we describe a detailed isolation protocol for microglia and immune infiltrates, optimized for large amounts of post mortem tissue from human and rhesus macaque, as well as smaller tissue amounts from mouse brain and spinal cord, that yield a highly purified microglia population (up to 98 % purity). This acute isolation protocol is based on mechanical dissociation and a two-step density gradient purification, followed by fluorescence-activated cell sorting (FACS) to obtain pure microglia and immune infiltrate populations.


Assuntos
Neoplasias Encefálicas/patologia , Separação Celular/métodos , Citometria de Fluxo/métodos , Glioma/patologia , Microglia/patologia , Doenças Neurodegenerativas/patologia , Animais , Anticorpos/química , Antígenos CD/genética , Antígenos CD/imunologia , Biomarcadores/metabolismo , Encéfalo/imunologia , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Separação Celular/instrumentação , Centrifugação com Gradiente de Concentração/métodos , Citometria de Fluxo/instrumentação , Expressão Gênica , Glioma/genética , Glioma/imunologia , Humanos , Macaca mulatta , Camundongos , Microglia/imunologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/imunologia , Medula Espinal/imunologia , Medula Espinal/patologia
17.
Glia ; 64(8): 1350-62, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27246930

RESUMO

Activated microglia, astrogliosis, expression of pro-inflammatory cytokines, blood brain barrier (BBB) leakage and peripheral immune cell infiltration are features of mesial temporal lobe epilepsy. Numerous studies correlated the expression of pro-inflammatory cytokines with the activated morphology of microglia, attributing them a pro-epileptogenic role. However, microglia and myeloid cells such as macrophages have always been difficult to distinguish due to an overlap in expressed cell surface molecules. Thus, the detrimental role in epilepsy that is attributed to microglia might be shared with myeloid infiltrates. Here, we used a FACS-based approach to discriminate between microglia and myeloid infiltrates isolated from the hippocampus 24 h and 96 h after status epilepticus (SE) in pilocarpine-treated CD1 mice. We observed that microglia do not express MHCII whereas myeloid infiltrates express high levels of MHCII and CD40 96 h after SE. This antigen-presenting cell phenotype correlated with the presence of CD4(pos) T cells. Moreover, microglia only expressed TNFα 24 h after SE while myeloid infiltrates expressed high levels of IL-1ß and TNFα. Immunofluorescence showed that astrocytes but not microglia expressed IL-1ß. Myeloid infiltrates also expressed matrix metalloproteinase (MMP)-9 and 12 while microglia only expressed MMP-12, suggesting the involvement of both cell types in the BBB leakage that follows SE. Finally, both cell types expressed the phagocytosis receptor Axl, pointing to phagocytosis of apoptotic cells as one of the main functions of microglia. Our data suggests that, during early epileptogenesis, microglia from the hippocampus remain rather immune supressed whereas myeloid infiltrates display a strong inflammatory profile. GLIA 2016 GLIA 2016;64:1350-1362.


Assuntos
Hipocampo/imunologia , Microglia/imunologia , Células Mieloides/imunologia , Estado Epiléptico/imunologia , Animais , Astrócitos/imunologia , Astrócitos/patologia , Antígenos CD40/metabolismo , Modelos Animais de Doenças , Hipocampo/patologia , Interleucina-1beta/metabolismo , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 9 da Matriz , Camundongos , Microglia/patologia , Células Mieloides/patologia , Pilocarpina , Córtex Piriforme/imunologia , Córtex Piriforme/patologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Estado Epiléptico/patologia , Receptor Tirosina Quinase Axl
18.
Glia ; 63(9): 1495-506, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25808223

RESUMO

Recently, the number of genome-wide transcriptome profiles of pure populations of glia cells has drastically increased, resulting in an unprecedented amount of data that offer opportunities to study glia phenotypes and functions in health and disease. To make genome-wide transcriptome data easily accessible, we developed the Glia Open Access Database (GOAD), available via www.goad.education. GOAD contains a collection of previously published and unpublished transcriptome data, including datasets from isolated microglia, astrocytes and oligodendrocytes both at homeostatic and pathological conditions. It contains an intuitive web-based interface that consists of three features that enable searching, browsing, analyzing, and downloading of the data. The first feature is differential gene expression (DE) analysis that provides genes that are significantly up and down-regulated with the associated fold changes and p-values between two conditions of interest. In addition, an interactive Venn diagram is generated to illustrate the overlap and differences between several DE gene lists. The second feature is quantitative gene expression (QE) analysis, to investigate which genes are expressed in a particular glial cell type and to what degree. The third feature is a search utility, which can be used to find a gene of interest and depict its expression in all available expression data sets by generating a gene card. In addition, quality guidelines and relevant concepts for transcriptome analysis are discussed. Finally, GOAD is discussed in relation to several online transcriptome tools developed in neuroscience and immunology. In conclusion, GOAD is a unique platform to facilitate integration of bioinformatics in glia biology.


Assuntos
Bases de Dados Genéticas , Doenças do Sistema Nervoso/metabolismo , Neuroglia/metabolismo , Acesso à Informação , Animais , Humanos , Internet , Doenças do Sistema Nervoso/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA