Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 917: 170476, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38290679

RESUMO

Proliferations of benthic cyanobacteria are increasingly in the public eye, with rising animal deaths associated with benthic rather than planktonic blooms. In early June 2021, two dogs died after consuming material on the shore of Shubenacadie Grand Lake, Nova Scotia. Preliminary investigations indicated anatoxins produced by benthic cyanobacterial mats were responsible for the deaths. In this study, we monitored the growth of a toxic benthic cyanobacterial species (Microcoleus sp.) along a stream-lake continuum where the canine poisonings occurred. We found that the species was able to proliferate in both lentic and lotic environments, but temporal growth dynamics and the predominant sub-species were influenced by habitat type, and differed with hydrodynamic setting, nutrient and sunlight availability. Toxin concentration was greatest in cyanobacterial mats growing in the oligotrophic lakeshore environment (maximum measured total anatoxins (ATXs) >20 mg·kg-1 wet weight). This corresponded with a shift in the profile of ATX analogues, which also indicated changing sub-species dominance along the stream-lake transition.


Assuntos
Toxinas Bacterianas , Toxinas de Cianobactérias , Cianobactérias , Tropanos , Cães , Animais , Rios/microbiologia , Toxinas Bacterianas/toxicidade , Lagos/microbiologia , Proliferação de Células
2.
Environ Microbiol ; 26(1): e16551, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072824

RESUMO

Rhizopus microsporus often lives in association with bacterial and viral symbionts that alter its biology. This fungal model represents an example of the complex interactions established among diverse organisms in functional holobionts. We constructed a Genome-Scale Model (GSM) of the fungal-bacterial-viral holobiont (iHol). We employed a constraint-based method to calculate the metabolic fluxes to decipher the metabolic interactions of the symbionts with their host. Our computational analyses of iHol simulate the holobiont's growth and the production of the toxin rhizoxin. Analyses of the calculated fluxes between R. microsporus in symbiotic (iHol) versus asymbiotic conditions suggest that changes in the lipid and nucleotide metabolism of the host are necessary for the functionality of the holobiont. Glycerol plays a pivotal role in the fungal-bacterial metabolic interaction, as its production does not compromise fungal growth, and Mycetohabitans bacteria can efficiently consume it. Narnavirus RmNV-20S and RmNV-23S affected the nucleotide metabolism without impacting the fungal-bacterial symbiosis. Our analyses highlighted the metabolic stability of Mycetohabitans throughout its co-evolution with the fungal host. We also predicted changes in reactions of the bacterial metabolism required for the active production of rhizoxin. This iHol is the first GSM of a fungal holobiont.


Assuntos
Macrolídeos , Rhizopus , Macrolídeos/metabolismo , Rhizopus/genética , Rhizopus/metabolismo , Bactérias/genética , Bactérias/metabolismo , Nucleotídeos/metabolismo , Simbiose/genética
3.
Environ Microbiol ; 25(12): 3319-3332, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37849433

RESUMO

Cyanophages are crucial for regulating cyanobacterial populations, but their influence on anatoxin-producing Microcoleus mat dynamics remains unexplored. Here, we use metagenomics to explore phage presence in benthic mats from the Wolastoq|Saint John River (New Brunswick, Canada) and the Eel River (California, USA). We recovered multiple viral-like sequences associated with different putative bacterial hosts, including two cyanophage genomes with apparently different replication strategies. A temperate cyanophage was found integrated in the genomes of Microcoleus sp. 3 recovered from the Eel River and is phylogenetically related to Phormidium phages. We also recovered novel virulent cyanophage genomes from Wolastoq and Eel River mats that were dominated by anatoxin-producing Microcoleus species predicted to be the host. Despite the geographical distance, these genomes have similar sizes (circa 239 kbp) and share numerous orthologous genes with high sequence identity. A considerable reduction of the anatoxin-producing Microcoleus species in Wolastoq mats following the emergence of the virulent phage suggests that phage infections have an important role in limiting the abundance of this toxigenic cyanobacterium and releasing anatoxins into the surrounding water. Our results constitute the first report of cyanophages predicted to infect mat-forming Microcoleus species associated with anatoxin production.


Assuntos
Cianobactérias , Cianobactérias/genética , Toxinas de Cianobactérias , Tropanos , Rios/microbiologia
4.
Harmful Algae ; 124: 102405, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164558

RESUMO

The presence of toxigenic benthic cyanobacteria in riverine ecosystems is an increasing concern around the world. In 2018, the death of three dogs along the Wolastoq (also known as the Saint John River) in New Brunswick, Canada, was attributed to anatoxin exposure after they ingested benthic microbial mats found along the shore. Here, we shotgun sequenced the DNA of 15 non-axenic cyanobacterial isolates derived from four anatoxin-containing benthic mat samples associated with the dog deaths. Anatoxins were produced by some of the isolates, but not all. We retrieved near-complete Microcoleus metagenome-assembled genomes (MAGs) from the isolates that are closely related to anatoxin-producing Microcoleus from the Cardrona River (New Zealand), although the Microcoleus MAGs from the Wolastoq varied in the presence/absence of the anatoxin-a biosynthesis cluster. Sequence similarity at the genomic level suggests that toxigenic and non-toxigenic Microcoleus MAGs from the Wolastoq belong to the same species but are separate subspecies. The toxigenic and nontoxic Wolastoq Microcoleus subspecies coexisted in the mat samples in similar relative abundance. Overall genomic comparisons revealed that toxigenic Microcoleus MAGs are longer and code for more accessory genes than their non-toxigenic relatives, suggesting a differential responsiveness to changing environments, stress conditions and nutrient availability.


Assuntos
Toxinas Bacterianas , Cianobactérias , Animais , Cães , Toxinas Bacterianas/toxicidade , Novo Brunswick , Ecossistema , Cianobactérias/genética , Canadá , Genômica
5.
Front Microbiol ; 13: 1020932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246272

RESUMO

Genes of unknown function constitute a considerable fraction of most bacterial genomes. In a Tn5-based search for stress response genes in the nitrogen-fixing facultative endosymbiont Sinorhizobium (Ensifer) meliloti, we identified a previously uncharacterized gene required for growth on solid media with increased NaCl concentrations. The encoded protein carries a predicted thioredoxin fold and deletion of the gene also results in increased sensitivity to hydrogen peroxide and cumene hydroperoxide. We have designated the gene srlA (stress resistance locus A) based on these phenotypes. A deletion mutant yields phenotypic revertants on high salt medium and genome sequencing revealed that all revertants carry a mutation in genes homologous to either cenK or cenR. srlA promoter activity is abolished in these revertant host backgrounds and in a strain carrying a deletion in cenK. We also observed that the srlA promoter is autoregulated, displaying low activity in a wildtype (wt) host background and high activity in the srl deletion mutant background. The srlA promoter includes a conserved inverted repeat directly upstream of the predicted -35 subsequence. A mutational analysis demonstrated that the site is required for the high promoter activity in the srlA deletion background. Electromobility shift assays using purified wildtype CenR response regulator and a D55E phosphomimetic derivative suggest this protein acts as a likely Class II activator by binding promoter DNA. These results document the first identified CenK-CenR regulon member in S. meliloti and demonstrate this two-component regulatory system and gene srlA influences cellular growth and persistence under certain stress-inducing conditions.

6.
Curr Biol ; 27(18): 2763-2773.e5, 2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28889978

RESUMO

The endosymbiotic acquisition of mitochondria and plastids more than 1 Ga ago profoundly impacted eukaryote evolution. At the heart of understanding organelle evolution is the re-arrangement of the endosymbiont proteome into a host-controlled organellar proteome. However, early stages in this process as well as the timing of events that underlie organelle integration remain poorly understood. The amoeba Paulinella chromatophora contains cyanobacterium-derived photosynthetic organelles, termed "chromatophores," that were acquired more recently (around 100 Ma ago). To explore the re-arrangement of an organellar proteome during its integration into a eukaryotic host cell, here we characterized the chromatophore proteome by protein mass spectrometry. Apparently, genetic control over the chromatophore has shifted substantially to the nucleus. Two classes of nuclear-encoded proteins-which differ in protein length-are imported into the chromatophore, most likely through independent pathways. Long imported proteins carry a putative, conserved N-terminal targeting signal, and many specifically fill gaps in chromatophore-encoded metabolic pathways or processes. Surprisingly, upon heterologous expression in a plant cell, the putative chromatophore targeting signal conferred chloroplast localization. This finding suggests common features in the protein import pathways of chromatophores and plastids, two organelles that evolved independently and more than 1 Ga apart from each other. By combining experimental data with in silico predictions, we provide a comprehensive catalog of almost 450 nuclear-encoded, chromatophore-targeted proteins. Interestingly, most imported proteins seem to derive from ancestral host genes, suggesting that the re-targeting of nuclear-encoded proteins that resulted from endosymbiotic gene transfers plays only a minor role at the onset of chromatophore integration.


Assuntos
Cercozoários/fisiologia , Cromatóforos/fisiologia , Evolução Molecular , Transferência Genética Horizontal , Proteoma/análise , Proteínas de Protozoários/análise , Espectrometria de Massas , Redes e Vias Metabólicas , Análise de Sequência de Proteína , Simbiose
7.
BMC Evol Biol ; 17(1): 99, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28410570

RESUMO

BACKGROUND: Genome degradation of host-restricted mutualistic endosymbionts has been attributed to inactivating mutations and genetic drift while genes coding for host-relevant functions are conserved by purifying selection. Unlike their free-living relatives, the metabolism of mutualistic endosymbionts and endosymbiont-originated organelles is specialized in the production of metabolites which are released to the host. This specialization suggests that natural selection crafted these metabolic adaptations. In this work, we analyzed the evolution of the metabolism of the chromatophore of Paulinella chromatophora by in silico modeling. We asked whether genome reduction is driven by metabolic engineering strategies resulted from the interaction with the host. As its widely known, the loss of enzyme coding genes leads to metabolic network restructuring sometimes improving the production rates. In this case, the production rate of reduced-carbon in the metabolism of the chromatophore. RESULTS: We reconstructed the metabolic networks of the chromatophore of P. chromatophora CCAC 0185 and a close free-living relative, the cyanobacterium Synechococcus sp. WH 5701. We found that the evolution of free-living to host-restricted lifestyle rendered a fragile metabolic network where >80% of genes in the chromatophore are essential for metabolic functionality. Despite the lack of experimental information, the metabolic reconstruction of the chromatophore suggests that the host provides several metabolites to the endosymbiont. By using these metabolites as intracellular conditions, in silico simulations of genome evolution by gene lose recover with 77% accuracy the actual metabolic gene content of the chromatophore. Also, the metabolic model of the chromatophore allowed us to predict by flux balance analysis a maximum rate of reduced-carbon released by the endosymbiont to the host. By inspecting the central metabolism of the chromatophore and the free-living cyanobacteria we found that by improvements in the gluconeogenic pathway the metabolism of the endosymbiont uses more efficiently the carbon source for reduced-carbon production. In addition, our in silico simulations of the evolutionary process leading to the reduced metabolic network of the chromatophore showed that the predicted rate of released reduced-carbon is obtained in less than 5% of the times under a process guided by random gene deletion and genetic drift. We interpret previous findings as evidence that natural selection at holobiont level shaped the rate at which reduced-carbon is exported to the host. Finally, our model also predicts that the ABC phosphate transporter (pstSACB) which is conserved in the genome of the chromatophore of P. chromatophora strain CCAC 0185 is a necessary component to release reduced-carbon molecules to the host. CONCLUSION: Our evolutionary analysis suggests that in the case of Paulinella chromatophora natural selection at the holobiont level played a prominent role in shaping the metabolic specialization of the chromatophore. We propose that natural selection acted as a "metabolic engineer" by favoring metabolic restructurings that led to an increased release of reduced-carbon to the host.


Assuntos
Cercozoários/citologia , Cercozoários/fisiologia , Cianobactérias/fisiologia , Evolução Biológica , Cercozoários/genética , Simulação por Computador , Cianobactérias/genética , Hexoses/metabolismo , Seleção Genética , Simbiose , Synechococcus/citologia , Synechococcus/metabolismo
8.
PLoS Curr ; 82016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28515968

RESUMO

The ancestor of Paulinella chromatophora established a symbiotic relationship with cyanobacteria related to the Prochloroccocus/Synechococcus clade. This event has been described as a second primary endosymbiosis leading to a plastid in the making. Based on the rate of pseudogene disintegration in the endosymbiotic bacteria Buchnera aphidicola, it was suggested that the chromatophore in P. chromatophora has a minimum age of ~60 Myr. Here we revisit this estimation by using a lognormal relaxed molecular clock on the 18S rRNA of P. chromatophora. Our time estimates show that depending on the assumptions made to calibrate the molecular clock, P. chromatophora diverged from heterotrophic Paulinella spp. ~ 90 to 140 Myr ago, thus establishing a maximum date for the origin of the chromatophore.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA