Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Front Oncol ; 7: 223, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28971066

RESUMO

The CATANA proton therapy center was the first Italian clinical facility making use of energetic (62 MeV) proton beams for the radioactive treatment of solid tumors. Since the date of the first patient treatment in 2002, 294 patients have been successful treated whose majority was affected by choroidal and iris melanomas. In this paper, we report on the current clinical and physical status of the CATANA facility describing the last dosimetric studies and reporting on the last patient follow-up results. The last part of the paper is dedicated to the description of the INFN-LNS ongoing activities on the realization of a beamline for the transport of laser-accelerated ion beams for future applications. The ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) project is introduced and the main scientific aspects will be described.

3.
Q J Nucl Med Mol Imaging ; 60(3): 264-73, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27463889

RESUMO

BACKGROUND: In this paper the clinical value of PET for early prediction of tumor response to erlotinib in patients with advanced or metastatic non-small cell lung cancer (NSCLC) after failure of at least one prior chemotherapy regimen is evaluated. The aim was to compare the early metabolic treatment response using European Organization for Research and Treatment of Cancer (EORTC) 1999 recommendations and PET Response Criteria in Solid Tumors (PERCIST), and the standard treatment response using Response Evaluation Criteria in Solid Tumors (RECIST). METHODS: Twenty patients with stage IV NSCLC were enrolled prospectively. PET/CT studies were performed before, then 48 hours, and 45 days after the initiation of erlotinib treatment. The lesion with the highest uptake in each patient was evaluated according to EORTC 1999 recommendations, PERCIST and RECIST to assess metabolic and anatomic response. Response classifications were compared statistically using Wilcoxon signed-rank test. Disease-free survival (DFS) and overall survival (OS) were calculated by the Kaplan-Meier Test. RESULTS: At 48 hours, the Kaplan-Meier analysis showed that EORTC proved to be a significant prognostic factor for predicting DFS and OS. At 45 days, there was a significant difference in response evaluation between RECIST and metabolic classifications. RECIST and PERCIST were significant prognostic factors for predicting DFS and OS. EORTC was not able to discriminate responder from non-responder patients. CONCLUSIONS: This study shows that, according to the EORTC protocol, the PET exam is able to provide early identification of patients who benefit from Erlotinib treatment. Used at the end of therapy, PERCIST could be considered an appropriate metabolic evaluation method to discriminate responders from non-responders.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Intervalo Livre de Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento
4.
Chemotherapy ; 56(3): 214-22, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20551638

RESUMO

BACKGROUND: Metastatic melanoma is one of the most aggressive tumours and is also very resistant to current therapeutic approaches. The aim of this investigation was the in vitro study of the anti-proliferative effects of fotemustine (FM; 100 and 250 microM), bevacizumab (5 microg/ml) and proton irradiation (12 and 16 Gy) on resistant HTB140 human melanoma cells. METHODS: Viability was estimated by sulphorhodamine B assay, while cell proliferation was analyzed by 5-bromo-2-deoxyuridine assay. Cell cycle distribution and apoptosis were examined using flow cytometry. RESULTS: Cell viability and proliferation were reduced after all applied treatments. The level of apoptosis significantly increased after treatment with FM, protons or a combination of all agents, while the apoptotic index ranged from 1.2 to 9.2. Proton irradiation, as well as combined treatment with bevacizumab and protons or 100 microM FM, bevacizumab and protons, have reduced melanoma cell proliferation through the induction of G1 phase arrest. Single FM (250 microM) or bevacizumab treatment and their combination, as well as the joint application of these 2 agents with protons, reduced cell proliferation and provoked G2 phase accumulation. CONCLUSION: The analyzed treatments reduced cell viability and proliferation, triggered G1 or G2 cell cycle phase accumulation and stimulated apoptotic cell death.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Compostos de Nitrosoureia/administração & dosagem , Compostos Organofosforados/administração & dosagem , Prótons , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Bevacizumab , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos
5.
J Exp Clin Cancer Res ; 28: 50, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19358719

RESUMO

BACKGROUND: Considering that HTB140 melanoma cells have shown a poor response to either protons or alkylating agents, the effects of a combined use of these agents have been analysed. METHODS: Cells were irradiated in the middle of the therapeutic 62 MeV proton spread out Bragg peak (SOBP). Irradiation doses were 12 or 16 Gy and are those frequently used in proton therapy. Four days after irradiation cells were treated with fotemustine (FM) or dacarbazine (DTIC). Drug concentrations were 100 and 250 microM, values close to those that produce 50% of growth inhibition. Cell viability, proliferation, survival and cell cycle distribution were assessed 7 days after irradiation that corresponds to more than six doubling times of HTB140 cells. In this way incubation periods providing the best single effects of drugs (3 days) and protons (7 days) coincided at the same time. RESULTS: Single proton irradiations have reduced the number of cells to approximately 50%. FM caused stronger cell inactivation due to its high toxicity, while the effectiveness of DTIC, that was important at short term, almost vanished with the incubation of 7 days. Cellular mechanisms triggered by proton irradiation differently influenced the final effects of combined treatments. Combination of protons and FM did not improve cell inactivation level achieved by single treatments. A low efficiency of the single DTIC treatment was overcome when DTIC was introduced following proton irradiation, giving better inhibitory effects with respect to the single treatments. Most of the analysed cells were in G1/S phase, viable, active and able to replicate DNA. CONCLUSION: The obtained results are the consequence of a high resistance of HTB140 melanoma cells to protons and/or drugs. The inactivation level of the HTB140 human melanoma cells after protons, FM or DTIC treatments was not enhanced by their combined application.


Assuntos
Dacarbazina/farmacologia , Melanoma/patologia , Compostos de Nitrosoureia/farmacologia , Compostos Organofosforados/farmacologia , Prótons , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos
6.
Phys Med ; 24(4): 187-95, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18514560

RESUMO

The correlation between time dependent viabilities, after applying two radiation qualities and two alkylating agents on HTB140 melanoma cells, has been studied. Irradiations were performed with gamma-rays and 62 MeV protons, close to the Bragg peak maximum, delivering doses of 8-24 Gy. Treatments with fotemustine (FM) and dacarbazine (DTIC) were carried out with concentrations of 0.05-2mM. High radio-resistance of HTB140 cells revealed by a clonogenic assay was confirmed by microtetrasolium and sulforhodamine B, through the surviving fraction at 2 Gy (SF2), being 0.961-0.956 for gamma-rays and 0.931-0.887 for protons. A better efficiency of protons was illustrated by relative biological effectiveness at 2 Gy (RBE), ranging from 1.69 to 1.89. A kinetic study of concentration dependent cytotoxicity indicated that the best effect of the drugs, estimated as the concentration that produces 50% of growth inhibition (IC(50)), was obtained at 48 h, having values of 76 microM for DTIC and 145 microM for FM. The cytostatic ability of the drugs pointed out that the presence of DTIC at 24h, compared to FM, was insufficient to produce an effect. Protons and FM demonstrated their pro apoptotic capacity. Cross-resistance between treatments applied to the HTB140 cells was observed, protons being the most efficient, while DTIC, FM and gamma-rays demonstrated a lower level of cell inactivation.


Assuntos
Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Melanoma/patologia , Melanoma/fisiopatologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Humanos , Doses de Radiação
7.
Ann N Y Acad Sci ; 1095: 154-64, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17404028

RESUMO

Viability of human HTB140 melanoma cells after being exposed to fotemustine (FM) and dacarbazine (DTIC) as well as to proton irradiation was studied. Effects of 100 and 250 microM drugs were assessed after incubation of 6, 24, 48, 72, and 96 h. Irradiations were performed with 62 MeV therapeutic protons, delivering to the cell monolayer single doses of 2, 4, 8, 12, and 16 Gy. Viability was evaluated 7 days after irradiation. Inactivation level was estimated using microtetrasolium (MTT) and sulforhodamine B (SRB) assays. Combined effects of each drug and protons, were carried out using the same drug concentrations. Proton doses applied were those used in therapy, that is, 12 and 16 Gy. With the increase of drug concentration or irradiation dose, level of cell inactivation reached approximately 60%, 48 h after drug treatment or 7 days after irradiation at 16 Gy. Considering the rate of drug concentrations used, as well as the level of doses applied, it appears that HTB140 cells are more resistant to proton irradiation than to alkylating agents tested. The combined treatment with FM or DTIC and protons did not show significant changes of cell viability as compared to the effects of single agents. Since the time point for measuring cumulative effects of drug and irradiation was 48 h post irradiation, it seems that the obtained level of viability could be attributed primarily to the effects of drugs.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Dacarbazina/farmacologia , Melanoma/tratamento farmacológico , Melanoma/radioterapia , Compostos de Nitrosoureia/farmacologia , Compostos Organofosforados/farmacologia , Terapia com Prótons , Antineoplásicos Alquilantes/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Dacarbazina/administração & dosagem , Humanos , Melanoma/patologia , Compostos de Nitrosoureia/administração & dosagem , Compostos Organofosforados/administração & dosagem
8.
Ann N Y Acad Sci ; 1095: 165-74, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17404029

RESUMO

Effects of single irradiation with gamma rays and protons on human HTB140 melanoma cell growth were compared. Exponentially growing cells were irradiated close to the Bragg peak maximum of the unmodulated 62 MeV protons, as well as with (60)Co gamma rays. Applied doses ranged from 8 to 24 Gy. Viability of cells and proliferation capacity were assessed 7 days after irradiation. Induction of apoptosis and cell cycle phase redistribution were observed 6 and 48 h after irradiation. Significant inhibitory effects of both irradiation qualities were detected 7 days after irradiation. Important reduction of HTB140 cell viability was observed after irradiation with protons. Almost linear and highly significant (P < 0.001) decrease of cell proliferation was observed 7 days after irradiation with gamma rays and protons, as compared to nonirradiated controls. Protons induced apoptosis, both 6 and 48 h after irradiation. With the increase of post-irradiation incubation time, number of apoptotic cells decreased. Exposure of HTB140 cells to gamma rays did not provoke apoptotic cell death. Important number of cells in G1-S phase, detected by the cell cycle phase redistribution analyses, suggested high metabolic activity of irradiated melanoma cells within the first 48 h. Both irradiation qualities caused modest G2-M arrest 6 and 48 h after irradiation, thus supporting results that illustrated high radioresistance of HTB140 cells.


Assuntos
Raios gama/uso terapêutico , Melanoma/radioterapia , Terapia com Prótons , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Radioisótopos de Cobalto/uso terapêutico , Relação Dose-Resposta à Radiação , Humanos
9.
Phys Med ; 22(1): 29-32, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17664153

RESUMO

Metal Oxide Semiconductor (MOS) device structures can be used to measure ionizing radiation through the mechanism of hole trapping in the oxide layer leading to changing of electrical characteristic of the device. They are a new type of direct reading semiconductor dosimeters. Due to their extremely small physical size, ability to permanently store the accumulated dose, dose-rate independence and their ease of use make them very promising for in vivo dosimetry. They are attractive for dosimetry in small radiation fields used in modern radiation oncology modalities, as conformal radiotherapy, IMRT, stereotactic radiotherapy/radiosurgery and proton therapy. Preliminary results on the use of commercial MOSFET dosimeters (TN-502RD, Thomson & Nielsen Electronics Ltd, Canada) irradiated on therapeutic 62 MeV proton beams are presented. Linearity with absorbed dose, sensibility and energy dependence were investigated. Moreover, the possibility to use of MOSFET dosimeters in order to measure the Output Factors (OF) for very small irradiation fields was verified. The comparison of OF obtained using MOSFETs and other dosimetry systems is reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA