Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Trends Plant Sci ; 29(5): 501-503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38158302

RESUMO

Strigolactones (SLs) are fundamental to the ability of plants to cope with phosphate deficiency. A recent study by Yuan et al. indicates that the genetic module PHR2/NSP1/NSP2 is crucial in activating SL biosynthesis and signaling under inorganic phosphate (Pi) deficiency. Furthermore, this genetic module is essential for improving Pi and nitrogen homeostasis in rice.


Assuntos
Produtos Agrícolas , Lactonas , Oryza , Lactonas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fosfatos/metabolismo , Fosfatos/deficiência , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant Cell Physiol ; 64(8): 850-857, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37300552

RESUMO

Many plants associate with arbuscular mycorrhizal (AM) fungi for nutrient acquisition, and most legumes also associate with nitrogen-fixing rhizobial bacteria for nitrogen acquisition. The association of plants with AM fungi and rhizobia depends on the perception of lipo-chitooligosaccharides (LCOs) produced by these micro-symbionts. Recent studies reveal that cereals can perceive LCOs better in soil deprived of phosphate (Pi) and nitrogen to activate symbiosis signaling and form efficient AM symbiosis. Nevertheless, the Pi deficiency in the soil hinders the symbiotic association of legumes with rhizobia, ultimately reducing nitrogen fixation. Here, we discuss a mechanistic overview of the factors regulating root nodule symbiosis under Pi-deficient conditions and further emphasize the possible ways to overcome this hurdle. Ignoring the low Pi problem not only can compromise the functionality of the nitrogen cycle by nitrogen fixation through legumes but can also put food security at risk globally. This review aims to bring the scientific community's attention toward the detrimental response of legumes toward Pi-deficient soil for the formation of root nodule symbiosis and hence reduced nitrogen fixation. In this review, we have highlighted the recent studies that have advanced our understanding of these critical areas and discussed some future directions. Furthermore, this review highlights the importance of communicating science with farmers and the agriculture community to fully harness the potential of the symbiotic association of plants in nutrient-deficient soil for sustainable agriculture.


Assuntos
Fabaceae , Micorrizas , Rhizobium , Simbiose/fisiologia , Solo , Fosfatos , Micorrizas/fisiologia , Plantas , Fabaceae/microbiologia , Fixação de Nitrogênio , Quitina , Agricultura
4.
Trends Plant Sci ; 28(2): 125-127, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36443185

RESUMO

Nodule cysteine-rich (NCR) peptides have a major role in the differentiation of endocytosed bacteria into nitrogen-fixing bacteroids. A recent paper by Sankari et al. indicates that NCR247 is essential for the uptake of iron, a mineral nutrient required for nitrogenase activity. Furthermore, the special ability of NCR247 to sequester haem suggests potential applications for human health.


Assuntos
Rhizobium , Humanos , Ferro , Simbiose , Peptídeos/metabolismo , Bactérias/metabolismo , Fixação de Nitrogênio
5.
New Phytol ; 237(4): 1082-1085, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36401792

RESUMO

Legumes form a symbiotic association with rhizobia and fix atmospheric nitrogen in specialized root organs known as nodules. It is well known that salt stress inhibits root nodule symbiosis by decreasing rhizobial growth, rhizobial infection, nodule number, and nitrogenase activity in diverse legumes. Despite this knowledge, the genetic and molecular mechanisms governing salt stress's inhibition of nodulation and nitrogen fixation are still elusive. In this Viewpoint, we summarize the most recent knowledge of the genetic mechanisms that shape this symbiosis according to the salt levels in the soil. We emphasize the relevance of modulating the activity of the transcription factor Nodule Inception to properly shape the symbiosis with rhizobia accordingly. We also highlight the knowledge gaps that are critical for gaining a deeper understanding of the molecular mechanisms underlying the adaptation of the root nodule symbiosis to salt-stress conditions. We consider that filling these gaps can help to improve legume nodulation and harness its ecological benefits even under salt-stress conditions.


Assuntos
Fabaceae , Rhizobium , Nódulos Radiculares de Plantas , Simbiose/genética , Salinidade , Fabaceae/genética , Fixação de Nitrogênio/genética , Rhizobium/fisiologia , Estresse Salino/genética , Nodulação/genética
6.
Front Plant Sci ; 13: 1034419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466235

RESUMO

Both plant- and rhizobia-derived small RNAs play an essential role in regulating the root nodule symbiosis in legumes. Small RNAs, in association with Argonaute proteins, tune the expression of genes participating in nodule development and rhizobial infection. However, the role of Argonaute proteins in this symbiosis has been overlooked. In this study, we provide transcriptional evidence showing that Argonaute5 (AGO5) is a determinant genetic component in the root nodule symbiosis in Phaseolus vulgaris. A spatio-temporal transcriptional analysis revealed that the promoter of PvAGO5 is active in lateral root primordia, root hairs from rhizobia-inoculated roots, nodule primordia, and mature nodules. Transcriptional analysis by RNA sequencing revealed that gene silencing of PvAGO5 affected the expression of genes involved in the biosynthesis of the cell wall and phytohormones participating in the rhizobial infection process and nodule development. PvAGO5 immunoprecipitation coupled to small RNA sequencing revealed the small RNAs bound to PvAGO5 during the root nodule symbiosis. Identification of small RNAs associated to PvAGO5 revealed miRNAs previously known to participate in this symbiotic process, further supporting a role for AGO5 in this process. Overall, the data presented shed light on the roles that PvAGO5 plays during the root nodule symbiosis in P. vulgaris.

7.
Plant Cell Physiol ; 63(10): 1326-1343, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35552446

RESUMO

Legume roots engage in a symbiotic relationship with rhizobia, leading to the development of nitrogen-fixing nodules. Nodule development is a sophisticated process and is under the tight regulation of the plant. The symbiosis initiates with a signal exchange between the two partners, followed by the development of a new organ colonized by rhizobia. Over two decades of study have shed light on the transcriptional regulation of rhizobium-legume symbiosis. A large number of transcription factors (TFs) have been implicated in one or more stages of this symbiosis. Legumes must monitor nodule development amidst a dynamic physical environment. Some environmental factors are conducive to nodulation, whereas others are stressful. The modulation of rhizobium-legume symbiosis by the abiotic environment adds another layer of complexity and is also transcriptionally regulated. Several symbiotic TFs act as integrators between symbiosis and the response to the abiotic environment. In this review, we trace the role of various TFs involved in rhizobium-legume symbiosis along its developmental route and highlight the ones that also act as communicators between this symbiosis and the response to the abiotic environment. Finally, we discuss contemporary approaches to study TF-target interactions in plants and probe their potential utility in the field of rhizobium-legume symbiosis.


Assuntos
Fabaceae , Rhizobium , Rhizobium/fisiologia , Simbiose , Fabaceae/genética , Fatores de Transcrição/genética , Fixação de Nitrogênio , Nódulos Radiculares de Plantas
8.
Front Plant Sci ; 12: 679463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163511

RESUMO

Plants MADS-domain/AGL proteins constitute a large transcription factor (TF) family that controls the development of almost every plant organ. We performed a phylogeny of (ca. 500) MADS-domain proteins from Arabidopsis and four legume species. We identified clades with Arabidopsis MADS-domain proteins known to participate in root development that grouped legume MADS-proteins with similar high expression in roots and nodules. In this work, we analyzed the role of AGL transcription factors in the common bean (Phaseolus vulgaris) - Rhizobium etli N-fixing symbiosis. Sixteen P. vulgaris AGL genes (PvAGL), out of 93 family members, are expressed - at different levels - in roots and nodules. From there, we selected the PvAGL gene denominated PvFUL-like for overexpression or silencing in composite plants, with transgenic roots and nodules, that were used for phenotypic analysis upon inoculation with Rhizobium etli. Because of sequence identity in the DNA sequence used for RNAi-FUL-like construct, roots, and nodules expressing this construct -referred to as RNAi_AGL- showed lower expression of other five PvAGL genes highly expressed in roots/nodules. Contrasting with PvFUL-like overexpressing plants, rhizobia-inoculated plants expressing the RNAi_AGL silencing construct presented affection in the generation and growth of transgenic roots from composite plants, both under non-inoculated or rhizobia-inoculated condition. Furthermore, the rhizobia-inoculated plants showed decreased rhizobial infection concomitant with the lower expression level of early symbiotic genes and increased number of small, ineffective nodules that indicate an alteration in the autoregulation of the nodulation symbiotic process. We propose that the positive effects of PvAGL TF in the rhizobia symbiotic processes result from its potential interplay with NIN, the master symbiotic TF regulator, that showed a CArG-box consensus DNA sequence recognized for DNA binding of AGL TF and presented an increased or decreased expression level in roots from non-inoculated plants transformed with OE_FUL or RNAi_AGL construct, respectively. Our work contributes to defining novel transcriptional regulators for the common bean - rhizobia N-fixing symbiosis, a relevant process for sustainable agriculture.

9.
Plant Cell Physiol ; 62(3): 392-400, 2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-33515263

RESUMO

Phosphate (Pi) deficiency is a major factor limiting plant productivity worldwide. Land plants have evolved different strategies to cope with Pi deficiency. For instance, plants activate the so-called Pi starvation response (PSR) system, which is regulated by the transcription factor Phosphate Starvation Response1 (PHR1), to adjust plant growth and metabolic activity accordingly. Additionally, land plants can also establish mutualistic associations with soil microbes able to solubilize Pi from plant-inaccessible soil complexes and to transfer it to the host plant. A growing body of evidence indicates that PHR1 and the PSR system not only regulate the plant responses to Pi deficiency in an abiotic context, but they are also crucial for plants to properly interact with beneficial soil microbes able to provide them with soluble Pi. Recent evidence indicates that PHR1 and the PSR system contribute to shaping the plant-associated microbiota through the modulation of the plant immune system. The PSR and immune system outputs are tightly integrated by PHR1. Here, we review how plant host Pi status influences the establishment of the mutualistic association with soil microbes. We also highlight the role of PHR1 and the PSR system in shaping both the root microbiome and plant responses to Pi deficiency.


Assuntos
Fosfatos/deficiência , Plantas/microbiologia , Simbiose , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Micorrizas/metabolismo , Micorrizas/fisiologia , Fosfatos/metabolismo , Plantas/metabolismo , Microbiologia do Solo , Simbiose/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
10.
Results Probl Cell Differ ; 69: 409-419, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33263881

RESUMO

Legume-rhizobia symbiosis has a considerable ecological relevance because it replenishes the soil with fixed-nitrogen (e.g., ammonium) for other plants. Because of this benefit to the environment, the exploitation of the legume-rhizobia symbiosis can contribute to the development of the lower input, sustainable agriculture, thereby, reducing dependency on synthetic fertilizers. To achieve this goal, it is necessary to understand the different levels of regulation of this symbiosis to enhance its nitrogen-fixation efficiency. A different line of evidence attests to the relevance of early molecular events in the establishment of a successful symbiosis between legumes and rhizobia. In this chapter, we will review the early molecular signaling in the legume-rhizobia symbiosis. We will focus on the early molecular responses that are crucial for the recognition of the rhizobia as a potential symbiont.


Assuntos
Fabaceae/microbiologia , Interações entre Hospedeiro e Microrganismos , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Fixação de Nitrogênio , Simbiose
11.
Plant J ; 103(3): 1125-1139, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32344464

RESUMO

Inhibition of nodule development is one of the main adverse effects of phosphate (Pi) deficiency in legumes. Despite all of the efforts made over the last decades to understand how root nodules cope with Pi deficiency, the molecular mechanisms leading to the reduction in nodule number under Pi deficiency remain elusive. In the present study, we provide experimental evidence indicating that Pi deficiency activates the autoregulation of nodulation (AON) pathway, leading to a reduction in nodule numbers in both common bean and soybean. A transcriptional profile analysis revealed that the expression of the AON-related genes PvNIN, PvRIC1, PvRIC2, and PvTML is upregulated under Pi deficiency conditions. The downregulation of the MYB transcription factor PvPHR1 in common bean roots significantly reduced the expression of these four AON-related genes. Physiological analyses indicated that Pi deficiency does not affect the establishment of the root nodule symbiosis in the supernodulation mutant lines Pvnark and Gmnark. Reciprocal grafting and split-roots analyses determined that the activation of the AON pathway was required for the inhibitory effect of Pi deficiency. Altogether, these data improve our understanding of the genetic mechanisms controlling the establishment of the root nodule symbiosis under Pi deficiency.


Assuntos
Glycine max/metabolismo , Phaseolus/metabolismo , Fósforo/deficiência , Nodulação , Regulação da Expressão Gênica de Plantas , Fixação de Nitrogênio , Phaseolus/fisiologia , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/metabolismo , Glycine max/fisiologia , Simbiose
12.
Front Microbiol ; 11: 615775, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384681

RESUMO

OmpR, is one of the best characterized response regulators families, which includes transcriptional regulators with a variety of physiological roles including the control of symbiotic nitrogen fixation (SNF). The Rhizobium etli CE3 genome encodes 18 OmpR-type regulators; the function of the majority of these regulators during the SNF in common bean, remains elusive. In this work, we demonstrated that a R. etli mutant strain lacking the OmpR-type regulator RetPC57 (ΔRetPC57), formed less nodules when used as inoculum for common bean. Furthermore, we observed reduced expression level of bacterial genes involved in Nod Factors production (nodA and nodB) and of plant early-nodulation genes (NSP2, NIN, NF-YA and ENOD40), in plants inoculated with ΔRetPC57. RetPC57 also contributes to the appropriate expression of genes which products are part of the multidrug efflux pumps family (MDR). Interestingly, nodules elicited by ΔRetPC57 showed increased expression of genes relevant for Carbon/Nitrogen nodule metabolism (PEPC and GOGAT) and ΔRetPC57 bacteroids showed higher nitrogen fixation activity as well as increased expression of key genes directly involved in SNF (hfixL, fixKf, fnrN, fixN, nifA and nifH). Taken together, our data show that the previously uncharacterized regulator RetPC57 is a key player in the development of the R. etli - P. vulgaris symbiosis.

13.
Front Plant Sci ; 10: 1177, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632421

RESUMO

Unlike most other land plants, legumes can fulfill their nitrogen needs through the establishment of symbioses with nitrogen-fixing soil bacteria (rhizobia). Through this symbiosis, fixed nitrogen is incorporated into the food chain. Because of this ecological relevance, the genetic mechanisms underlying the establishment of the legume-rhizobia symbiosis (LRS) have been extensively studied over the past decades. During this time, different types of regulators of this symbiosis have been discovered and characterized. A growing number of studies have demonstrated the participation of different types of small RNAs, including microRNAs, in the different stages of this symbiosis. The involvement of small RNAs also indicates that Argonaute (AGO) proteins participate in the regulation of the LRS. However, despite this obvious role, the relevance of AGO proteins in the LRS has been overlooked and understudied. Here, we discuss and hypothesize the likely participation of AGO proteins in the regulation of the different steps that enable the establishment of the LRS. We also briefly review and discuss whether rhizobial symbiosis induces DNA damages in the legume host. Understanding the different levels of LRS regulation could lead to the development of improved nitrogen fixation efficiency to enhance sustainable agriculture, thereby reducing dependence on inorganic fertilizers.

14.
PLoS One ; 14(8): e0220993, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31408485

RESUMO

Acute hepatopancreatic necrosis disease (AHPND), caused by marine bacteria Vibrio Parahaemolyticus, is a huge problem in shrimp farms. The V. parahaemolyticus infecting material is contained in a plasmid which encodes for the lethal toxins PirABVp, whose primary target tissue is the hepatopancreas, causing sloughing of epithelial cells, necrosis, and massive hemocyte infiltration. To get a better understanding of the hepatopancreas response during AHPND, juvenile shrimp Litopenaeus vannamei were infected by immersion with V. parahaemolyticus. We performed transcriptomic mRNA sequencing of infected shrimp hepatopancreas, at 24 hours post-infection, to identify novel differentially expressed genes a total of 174,098 transcripts were examined of which 915 transcripts were found differentially expressed after comparative transcriptomic analysis: 442 up-regulated and 473 down-regulated transcripts. Gene Ontology term enrichment analysis for up-regulated transcripts includes metabolic process, regulation of programmed cell death, carbohydrate metabolic process, and biological adhesion, whereas for down-regulated transcripts include, microtubule-based process, cell activation, and chitin metabolic process. The analysis of protein- protein network between up and down-regulated genes indicates that the first gene interactions are connected to oxidation-processes and sarcomere organization. Additionally, protein-protein networks analysis identified 20-top highly connected hub nodes. Based on their immunological or metabolic function, ten candidate transcripts were selected to measure their mRNA relative expression levels in AHPND infected shrimp hepatopancreas by RT-qPCR. Our results indicate a close connection between the immune and metabolism systems during AHPND infection. Our RNA-Seq and RT-qPCR data provide the possible immunological and physiological scenario as well as the molecular pathways that take place in the shrimp hepatopancreas in response to an infectious disease.


Assuntos
Proteínas de Artrópodes/biossíntese , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hepatopâncreas , Penaeidae , Vibrioses , Vibrio parahaemolyticus , Animais , Hepatopâncreas/metabolismo , Hepatopâncreas/microbiologia , Necrose , Penaeidae/metabolismo , Penaeidae/microbiologia , Vibrioses/metabolismo , Vibrioses/microbiologia
15.
FEMS Microbiol Lett ; 366(4)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30601977

RESUMO

Salmonellosis outbreaks associated with sprouted legumes have been a food safety concern for over two decades. Despite evidence that Salmonella enterica triggers biotic plant defense pathways, it has remained unclear how plant defenses impact Salmonella growth on sprouted legumes. We used Medicago truncatula mutants in which the gene for the flagellin receptor FLS2 was disrupted to demonstrate that plant defenses triggered by FLS2 elicitation do not impact the growth of Salmonella enterica serovar Typhimurium ATCC 14028S. As a control, we tested the growth of Salmonella enterica serovar Typhimurium LT2, which has a defect in rpoS that increases its sensitivity to reactive oxygen species. LT2 displayed enhanced growth on M. truncatula FLS2 mutants in comparison to wild-type M. truncatula. We hypothesize that these growth differences are primarily due to differences in 14028S and LT2 reactive oxygen species sensitivity. Results from this study show that FLS2-mediated plant defenses are ineffective in inhibiting growth of Salmonella entrica 14028S.


Assuntos
Proteínas de Bactérias/genética , Medicago truncatula/genética , Medicago truncatula/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/genética , Fator sigma/genética , Mutação , Espécies Reativas de Oxigênio/metabolismo
16.
Plant Cell Physiol ; 60(3): 575-586, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476329

RESUMO

Signals and signaling pathways underlying the symbiosis between legumes and rhizobia have been studied extensively over the past decades. In a previous phosphoproteomic study on the Medicago truncatula-Sinorhizobium meliloti symbiosis, we identified plant proteins that are differentially phosphorylated upon the perception of rhizobial signals, called Nod factors. In this study, we provide experimental evidence that one of these proteins, Early Phosphorylated Protein 1 (EPP1), is required for the initiation of this symbiosis. Upon inoculation with rhizobia, MtEPP1 expression was induced in curled root hairs. Down-regulation of MtEPP1 in M. truncatula roots almost abolished calcium spiking, reduced the expression of essential symbiosis-related genes (MtNIN, MtNF-YB1, MtERN1 and MtENOD40) and strongly decreased nodule development. Phylogenetic analyses revealed that orthologs of MtEPP1 are present in legumes and specifically in plant species able to host arbuscular mycorrhizal fungi, suggesting a possible role in this association too. Short chitin oligomers induced the phosphorylation of MtEPP1 like Nod factors. However, the down-regulation of MtEPP1 affected the colonization of M. truncatula roots by arbuscular mycorrhizal fungi only moderately. Altogether, these findings indicate that MtEPP1 is essential for the establishment of the legume-rhizobia symbiosis but might plays a limited role in the arbuscular mycorrhizal symbiosis.


Assuntos
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/genética , Simbiose/genética , Simbiose/fisiologia
17.
Genes (Basel) ; 9(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326664

RESUMO

Phosphate (Pi) deficiency reduces nodule formation and development in different legume species including common bean. Despite significant progress in the understanding of the genetic responses underlying the adaptation of nodules to Pi deficiency, it is still unclear whether this nutritional deficiency interferes with the molecular dialogue between legumes and rhizobia. If so, what part of the molecular dialogue is impaired? In this study, we provide evidence demonstrating that Pi deficiency negatively affects critical early molecular and physiological responses that are required for a successful symbiosis between common bean and rhizobia. We demonstrated that the infection thread formation and the expression of PvNSP2, PvNIN, and PvFLOT2, which are genes controlling the nodulation process were significantly reduced in Pi-deficient common bean seedlings. In addition, whole-genome transcriptional analysis revealed that the expression of hormones-related genes is compromised in Pi-deficient seedlings inoculated with rhizobia. Moreover, we showed that regardless of the presence or absence of rhizobia, the expression of PvRIC1 and PvRIC2, two genes participating in the autoregulation of nodule numbers, was higher in Pi-deficient seedlings compared to control seedlings. The data presented in this study provides a mechanistic model to better understand how Pi deficiency impacts the early steps of the symbiosis between common bean and rhizobia.

19.
Genes (Basel) ; 8(12)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182547

RESUMO

The establishment of the symbiosis between legumes and nitrogen-fixing rhizobia is finely regulated at the transcriptional, posttranscriptional and posttranslational levels. Argonaute5 (AGO5), a protein involved in RNA silencing, can bind both viral RNAs and microRNAs to control plant-microbe interactions and plant physiology. For instance, AGO5 regulates the systemic resistance of Arabidopsis against Potato Virus X as well as the pigmentation of soybean (Glycine max) seeds. Here, we show that AGO5 is also playing a central role in legume nodulation based on its preferential expression in common bean (Phaseolus vulgaris) and soybean roots and nodules. We also report that the expression of AGO5 is induced after 1 h of inoculation with rhizobia. Down-regulation of AGO5 gene in P. vulgaris and G. max causes diminished root hair curling, reduces nodule formation and interferes with the induction of three critical symbiotic genes: Nuclear Factor Y-B (NF-YB), Nodule Inception (NIN) and Flotillin2 (FLOT2). Our findings provide evidence that the common bean and soybean AGO5 genes play an essential role in the establishment of the symbiosis with rhizobia.

20.
Theor Appl Genet ; 130(6): 1155-1168, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28289802

RESUMO

KEY MESSAGE: Loci associated with variation in maize responses to two microbe-associated molecular patterns (MAMPs) were identified. MAMP responses were correlated. No relationship between MAMP responses and quantitative disease resistance was identified. Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors. Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and expression changes of defense-related genes. In this study, we used two well-studied MAMPs (flg22 and chitooctaose) to challenge different maize lines to determine whether there was variation in the level of responses to these MAMPs, to dissect the genetic basis underlying that variation and to understand the relationship between MAMP response and quantitative disease resistance (QDR). Naturally occurring quantitative variation in ROS, NO production, and defense genes expression levels triggered by MAMPs was observed. A major quantitative traits locus (QTL) associated with variation in the ROS production response to both flg22 and chitooctaose was identified on chromosome 2 in a recombinant inbred line (RIL) population derived from the maize inbred lines B73 and CML228. Minor QTL associated with variation in the flg22 ROS response was identified on chromosomes 1 and 4. Comparison of these results with data previously obtained for variation in QDR and the defense response in the same RIL population did not provide any evidence for a common genetic basis controlling variation in these traits.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Receptores de Reconhecimento de Padrão/genética , Zea mays/genética , Mapeamento Cromossômico , Variação Genética , Óxido Nítrico/metabolismo , Locos de Características Quantitativas , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA