Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37688127

RESUMO

The development of advanced facemasks stands out as a paramount priority in enhancing healthcare preparedness. In this work, different polypropylene non-woven fabrics (NWF) were characterised regarding their structural, physicochemical and comfort-related properties. The selected NWF for the intermediate layer was functionalised with zinc oxide nanoparticles (ZnO NPs) 0.3 and 1.2wt% using three different methods: electrospinning, dip-pad-dry and exhaustion. After the confirmation of ZnO NP content and distribution within the textile fibres by morphological and chemical analysis, the samples were evaluated regarding their antimicrobial properties. The functionalised fabrics obtained via dip-pad-dry unveiled the most promising data, with 0.017 ± 0.013wt% ZnO NPs being mostly located at the fibre's surface and capable of total eradication of Staphylococcus aureus and Escherichia coli colonies within the tested 24 h (ISO 22196 standard), as well as significantly contributing (**** p < 0.0001) to the growth inhibition of the bacteriophage MS2, a surrogate of the SARS-CoV-2 virus (ISO 18184 standard). A three-layered structure was assembled and thermoformed to obtain facemasks combining the previously chosen NWF, and its resulting antimicrobial capacity, filtration efficiency and breathability (NP EN ISO 149) were assessed. The developed three-layered and multiscaled fibrous structures with antimicrobial capacities hold immense potential as active individual protection facemasks.

2.
J Funct Biomater ; 14(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662050

RESUMO

Mussels secrete protein-based byssal threads to tether to rocks, ships, and other organisms underwater. The secreted marine mussel adhesive proteins (MAPs) contain the peculiar amino acid L-3,4-dihydroxyphenylalanine (DOPA), whose catechol group content contributes greatly to their outstanding adhesive properties. Inspired by such mussel bioadhesion, we demonstrate that catechol-modified polysaccharides can be used to obtain adhesive membranes using the compaction of polyelectrolyte complexes (CoPEC) method. It is a simple and versatile approach that uses polyelectrolyte complexes as building blocks that coalesce and dry as membrane constructs simply as a result of sedimentation and mild temperature. We used two natural and biocompatible polymers: chitosan (CHI) as a polycation and hyaluronic acid (HA) as a polyanion. The CoPEC technique also allowed the entrapment of ternary bioactive glass nanoparticles to stimulate mineralization. Moreover, combinations of these polymers modified with catechol groups were made to enhance the adhesive properties of the assembled membranes. Extensive physico-chemical characterization was performed to investigate the successful production of composite CoPEC membranes in terms of surface morphology, wettability, stability, mechanical performance, in vitro bioactivity, and cellular behavior. Considering the promising properties exhibited by the obtained membranes, new adhesives suitable for the regeneration of hard tissues can be envisaged.

3.
Int J Biol Macromol ; 157: 119-134, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32335118

RESUMO

Chitosan and hyaluronic acid are the most attractive natural polysaccharides used for tissue regeneration, herein innovative orthopedic coatings were constructed by dip-coating technique. Inspired by the tough nacre-like structure, multifunctional (MF) films were constructed using bioactive glass nanoparticles (BGNPs) as the inorganic phase and hyaluronic acid (HA) and chitosan (CHT) polymers as the organic phase. Polymeric (CTR) films were also built with both polysaccharides. Inspired by the marine mussel's adhesive proteins, it was the first time that multilayered coatings containing both HA and CHT catechol conjugates were combined with BGNPs. Both catechol-conjugates were successful synthesized and, particularly for HA, it was possible to achieve the double of the substitution degree varying the reaction time. Prior to the LbL build-up, viscosity and Zeta potential measurements of the polyelectrolytes were conducted. The in-situ LbL growth of the films was monitored by quartz crystal microbalance with dissipation monitoring. It was found that the combination of both catechol conjugates resulted in a more compact LbL structure. It was also shown that MF evidenced bioactivity, CTR presented an improved adhesion, and preliminary cellular tests confirmed the biomedical potential of these multilayered coatings being used in orthopedic implants.


Assuntos
Catecóis/química , Quitosana/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Vidro/química , Ácido Hialurônico/química , Nanopartículas/química , Adesividade , Regeneração Tecidual Guiada , Viscosidade
5.
PLoS One ; 10(1): e0117100, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25617902

RESUMO

BACKGROUND: We have previously found in the chronic SKG mouse model of arthritis that long standing (5 and 8 months) inflammation directly leads to high collagen bone turnover, disorganization of the collagen network, disturbed bone microstructure and degradation of bone biomechanical properties. The main goal of the present work was to study the effects of the first days of the inflammatory process on the microarchitecture and mechanical properties of bone. METHODS: Twenty eight Wistar adjuvant-induced arthritis (AIA) rats were monitored during 22 days after disease induction for the inflammatory score, ankle perimeter and body weight. Healthy non-arthritic rats were used as controls for compar-ison. After 22 days of disease progression rats were sacrificed and bone samples were collected for histomorphometrical, energy dispersive X-ray spectroscopical analysis and 3-point bending. Blood samples were also collected for bone turnover markers. RESULTS: AIA rats had an increased bone turnover (as inferred from increased P1NP and CTX1, p = 0.0010 and p = 0.0002, respectively) and this was paralleled by a decreased mineral content (calcium p = 0.0046 and phos-phorus p = 0.0046). Histomorphometry showed a lower trabecular thickness (p = 0.0002) and bone volume (p = 0.0003) and higher trabecular sepa-ration (p = 0.0009) in the arthritic group as compared with controls. In addition, bone mechanical tests showed evidence of fragility as depicted by diminished values of yield stress and ultimate fracture point (p = 0.0061 and p = 0.0279, re-spectively) in the arthritic group. CONCLUSIONS: We have shown in an AIA rat model that arthritis induc-es early bone high turnover, structural degradation, mineral loss and mechanical weak-ness.


Assuntos
Artrite Experimental/patologia , Artrite Experimental/fisiopatologia , Remodelação Óssea , Fenômenos Mecânicos , Animais , Biomarcadores , Fenômenos Biomecânicos , Densidade Óssea , Feminino , Vértebras Lombares/patologia , Vértebras Lombares/fisiopatologia , Ratos , Ratos Wistar
6.
J Bone Miner Metab ; 30(6): 692-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22886402

RESUMO

Clinical risk factors (CRFs) are established predictors of fracture events. However, the influence of individual CRFs on trabecular mechanical fragility is still a subject of debate. In this study, we aimed to assess differences, adjusted for CRFs, between bone macrostructural parameters measured in ex-vivo specimens from hip fragility fracture patients and osteoarthritis patients, and to determine whether individual CRFs could predict trabecular bone mechanical behavior in hip fragility fractures. Additionally, we also looked for associations between the 10-year risk of major and hip fracture calculated by FRAX and trabecular bone mechanical performance. In this case-control study, a group of fragility fracture patients were compared with a group of osteoarthritis patients, both having undergone hip replacement surgery. A clinical protocol was applied in order to collect CRFs [body mass index (BMI), prior fragility fracture, parental history of hip fracture, long-term use of oral glucocorticoids, rheumatoid arthritis, current smoking, alcohol consumption, age and gender]. The 10-year probability of fracture was calculated. Serum bone turnover markers were determined and dual X-ray absorptiometry performed. Femoral head diameter was evaluated and trabecular bone cylinders were drilled for mechanical testing to determine bone strength, stiffness and toughness. We evaluated 40 hip fragility fracture and 52 osteoarthritis patients. Trabecular bone stiffness was significantly lower (p = 0.042) in hip fragility fracture patients when compared to osteoarthritic individuals, adjusted for age, gender and BMI. No other macrostructural parameter was statistically different between the groups. In hip fragility fracture patients, smoking habits (ß = -0.403; p = 0.018) and female gender (ß = -0.416; p = 0.008) were independently associated with lower stiffness. In addition, smoking was also independently associated with worse trabecular strength (ß = -0.323; p = 0.045), and toughness (ß = -0.403; p = 0.018). In these patients, the 10-year risk of major (r = -0.550; p = 0.012) and hip fracture (r = -0.513; p = 0.021) calculated using only CRFs was strongly correlated with femoral neck bone mineral density but not with mechanical performance. Our data showed that among fragility fracture patients active smoking is a predictor of worse intrinsic trabecular mechanical performance, and female gender is also independently associated with lower stiffness. In this population, the 10-year risk of fracture using CRFs with different weights only reflects bone mass loss but not trabecular mechanical properties.


Assuntos
Densidade Óssea , Doenças Ósseas/complicações , Fraturas do Quadril/etiologia , Fumar/efeitos adversos , Absorciometria de Fóton , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Doenças Ósseas/fisiopatologia , Estudos de Casos e Controles , Feminino , Colo do Fêmur/patologia , Colo do Fêmur/fisiopatologia , Fraturas do Quadril/patologia , Fraturas do Quadril/fisiopatologia , Humanos , Masculino , Osteoartrite/complicações , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA