Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Nat Metab ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777856

RESUMO

Nutrient handling is an essential function of the gastrointestinal tract. Hormonal responses of small intestinal enteroendocrine cells (EECs) have been extensively studied but much less is known about the role of colonic EECs in metabolic regulation. To address this core question, we investigated a mouse model deficient in colonic EECs. Here we show that colonic EEC deficiency leads to hyperphagia and obesity. Furthermore, colonic EEC deficiency results in altered microbiota composition and metabolism, which we found through antibiotic treatment, germ-free rederivation and transfer to germ-free recipients, to be both necessary and sufficient for the development of obesity. Moreover, studying stool and blood metabolomes, we show that differential glutamate production by intestinal microbiota corresponds to increased appetite and that colonic glutamate administration can directly increase food intake. These observations shed light on an unanticipated host-microbiota axis in the colon, part of a larger gut-brain axis, that regulates host metabolism and body weight.

2.
Cell Rep ; 43(3): 113899, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446666

RESUMO

Insulin-mechanistic target of rapamycin (mTOR) signaling drives anabolic growth during organismal development; its late-life dysregulation contributes to aging and limits lifespans. Age-related regulatory mechanisms and functional consequences of insulin-mTOR remain incompletely understood. Here, we identify LPD-3 as a megaprotein that orchestrates the tempo of insulin-mTOR signaling during C. elegans aging. We find that an agonist insulin, INS-7, is drastically overproduced from early life and shortens lifespan in lpd-3 mutants. LPD-3 forms a bridge-like tunnel megaprotein to facilitate non-vesicular cellular lipid trafficking. Lipidomic profiling reveals increased hexaceramide species in lpd-3 mutants, accompanied by up-regulation of hexaceramide biosynthetic enzymes, including HYL-1. Reducing the abundance of HYL-1, insulin receptor/DAF-2 or mTOR/LET-363, normalizes INS-7 levels and rescues the lifespan of lpd-3 mutants. LPD-3 antagonizes SINH-1, a key mTORC2 component, and decreases expression with age. We propose that LPD-3 acts as a megaprotein brake for organismal aging and that its age-dependent decline restricts lifespan through the sphingolipid-hexaceramide and insulin-mTOR pathways.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Envelhecimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Longevidade/fisiologia , Serina-Treonina Quinases TOR/metabolismo
3.
Cell Metab ; 36(3): 617-629.e7, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38340721

RESUMO

Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step of triglyceride (TG) synthesis. DGAT2 deletion in mice lowers liver TGs, and DGAT2 inhibitors are under investigation for the treatment of fatty liver disease. Here, we show that DGAT2 inhibition also suppressed SREBP-1 cleavage, reduced fatty acid synthesis, and lowered TG accumulation and secretion from liver. DGAT2 inhibition increased phosphatidylethanolamine (PE) levels in the endoplasmic reticulum (ER) and inhibited SREBP-1 cleavage, while DGAT2 overexpression lowered ER PE concentrations and increased SREBP-1 cleavage in vivo. ER enrichment with PE blocked SREBP-1 cleavage independent of Insigs, which are ER proteins that normally retain SREBPs in the ER. Thus, inhibition of DGAT2 shunted diacylglycerol into phospholipid synthesis, increasing the PE content of the ER, resulting in reduced SREBP-1 cleavage and less hepatic steatosis. This study reveals a new mechanism that regulates SREBP-1 activation and lipogenesis that is independent of sterols and SREBP-2 in liver.


Assuntos
Diacilglicerol O-Aciltransferase , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Diacilglicerol O-Aciltransferase/metabolismo , Retículo Endoplasmático/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidiletanolaminas/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo
4.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328083

RESUMO

Oxidative stress perturbs lipid homeostasis and contributes to metabolic diseases. Though ignored compared to mitochondrial oxidation, the endoplasmic reticulum (ER) generates reactive oxygen species requiring antioxidant quality control. Using multi-organismal profiling featuring Drosophila, zebrafish, and mammalian cells, here we characterize the paraoxonase-like APMAP as an ER-localized protein that promotes redox and lipid homeostasis and lipoprotein maturation. APMAP-depleted mammalian cells exhibit defective ER morphology, elevated ER and oxidative stress, lipid droplet accumulation, and perturbed ApoB-lipoprotein homeostasis. Critically, APMAP loss is rescued with chemical antioxidant NAC. Organismal APMAP depletion in Drosophila perturbs fat and lipoprotein homeostasis, and zebrafish display increased vascular ApoB-containing lipoproteins, particles that are atherogenic in mammals. Lipidomics reveals altered polyunsaturated phospholipids and increased ceramides upon APMAP loss, which perturbs ApoB-lipoprotein maturation. These ApoB-associated defects are rescued by inhibiting ceramide synthesis. Collectively, we propose APMAP is an ER-localized antioxidant that promotes lipid and lipoprotein homeostasis.

5.
iScience ; 27(1): 108653, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38274405

RESUMO

AGPAT2, a critical enzyme involved in the biosynthesis of phospholipids and triacylglycerol (TAG), is highly expressed in adipose tissue (AT). Whether overexpression of AGPAT2 in AT will result in increased TAG synthesis (obesity) and its metabolic complications remains unknown. We overexpressed human AGPAT2 specifically in AT using the adiponectin promoter and report increased mass of subcutaneous, gonadal, and brown AT in wild-type mice. Unexpectedly, overexpression of hAGPAT2 did not change the pattern of phospholipid or TAG concentration of the AT depots. Although there is an increase in liver weight, plasma aspartate aminotransferase, and plasma insulin at various time points of the study, it did not result in significant liver dysfunction. Despite increased adiposity in the Tg-AT-hAGPAT2;mAgpat2+/+ mice, there was no significant increase in TAG concentration of AT. Therefore, this study suggests a role of AGPAT2 in the generation of AT, but not for adipocyte TAG synthesis.

6.
bioRxiv ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38293096

RESUMO

Interorganelle contacts facilitate material exchanges and sustain the structural and functional integrity of organelles. Lipid droplets (LDs) of adipocytes are responsible for energy storage and mobilization responding to body needs. LD biogenesis defects compromise the lipid-storing capacity of adipocytes, resulting in ectopic lipid deposition and metabolic disorders, yet how the uniquely large LDs in adipocytes attain structural and functional maturation is incompletely understood. Here we show that the mammalian adipocyte-specific protein CLSTN3B is crucial for adipocyte LD maturation. CLSTN3B employs an arginine-rich segment to promote extensive contact and hemifusion-like structure formation between the endoplasmic reticulum (ER) and LD, allowing ER-to-LD phospholipid diffusion during LD expansion. CLSTN3B ablation results in reduced LD surface phospholipid density, increased turnover of LD-surface proteins, and impaired LD functions. Our results establish the central role of CLSTN3B in the adipocyte-specific LD maturation pathway that enhances lipid storage and maintenance of metabolic health under caloric overload.

8.
iScience ; 26(10): 107806, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37752957

RESUMO

Genetic loss of Agpat2 in humans and mice results in congenital generalized lipodystrophy with near-total loss of adipose tissue and predisposition to develop insulin resistance, diabetes mellitus, hepatic steatosis, and hypertriglyceridemia. The mechanism by which Agpat2 deficiency results in loss of adipose tissue remains unknown. We studied this by re-expressing human AGPAT2 (hAGPAT2) in Agpat2-null mice, regulated by doxycycline. In both sexes of Agpat2-null mice, adipose-tissue-specific re-expression of hAGPAT2 resulted in partial regeneration of both white and brown adipose tissue (but only 30%-50% compared with wild-type mice), which had molecular signatures of adipocytes, including leptin secretion. Furthermore, the stromal vascular fraction cells of regenerated adipose depots differentiated ex vivo only with doxycycline, suggesting the essential role of Agpat2 in adipocyte differentiation. Turning off expression of hAGPAT2 in vivo resulted in total loss of regenerated adipose tissue, clear evidence that Agpat2 is essential for adipocyte differentiation in vivo.

10.
Res Sq ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37461519

RESUMO

Nutrient handling is an essential function of the gastrointestinal tract. Most nutrient absorption occurs in the small intestine and is coordinated by hormone-producing intestinal epithelial cells known as enteroendocrine cells (EECs)1. In contrast, the colon mostly reclaims water and electrolytes, and handles the influx of microbially-derived metabolites, including short chain fatty acids (SCFA)2-4. Hormonal responses of small intestinal EECs have been extensively studied but much less in known about the role of colonic EECs in metabolic regulation. To address this core question, we investigated a mouse model deficient in colonic EECs. We found that colonic EEC deficiency leads to hyperphagia and obesity. Surprisingly, colonic EEC deficiency results in altered microbiota composition and metabolism, which we found through antibiotic treatment and transfer to germ free recipients, to be both necessary and sufficient for the development of obesity. Moreover, studying stool and blood metabolomes, we found that differential glutamate production by intestinal microbiota corresponds to increase appetite due to EEC loss. Finally, we show that colonic glutamate administration can directly increase food intake and activate appetite centers in the central nervous system. These observations shed light on an unanticipated host-microbiota axis in the colon, part of a larger gut-brain axis, that regulates host metabolism and body weight.

11.
Nat Cancer ; 4(6): 893-907, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37248394

RESUMO

Disseminated tumor cells with metabolic flexibility to utilize available nutrients in distal organs persist, but the precise mechanisms that facilitate metabolic adaptations remain unclear. Here we show fragmented mitochondrial puncta in latent brain metastatic (Lat) cells enable fatty acid oxidation (FAO) to sustain cellular bioenergetics and maintain redox homeostasis. Depleting the enriched dynamin-related protein 1 (DRP1) and limiting mitochondrial plasticity in Lat cells results in increased lipid droplet accumulation, impaired FAO and attenuated metastasis. Likewise, pharmacological inhibition of DRP1 using a small-molecule brain-permeable inhibitor attenuated metastatic burden in preclinical models. In agreement with these findings, increased phospho-DRP1 expression was observed in metachronous brain metastasis compared with patient-matched primary tumors. Overall, our findings reveal the pivotal role of mitochondrial plasticity in supporting the survival of Lat cells and highlight the therapeutic potential of targeting cellular plasticity programs in combination with tumor-specific alterations to prevent metastatic recurrences.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Dinaminas/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico
12.
bioRxiv ; 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824874

RESUMO

Insulin-mTOR signaling drives anabolic growth during organismal development, while its late-life dysregulation may detrimentally contribute to aging and limit lifespans. Age-related regulatory mechanisms and functional consequences of insulin-mTOR remain incompletely understood. Here we identify LPD-3 as a megaprotein that orchestrates the tempo of insulin-mTOR signaling during C. elegans aging. We find that an agonist insulin INS-7 is drastically over-produced in early life and shortens lifespan in lpd-3 mutants, a C. elegans model of human Alkuraya-Kucinskas syndrome. LPD-3 forms a bridge-like tunnel megaprotein to facilitate phospholipid trafficking to plasma membranes. Lipidomic profiling reveals increased abundance of hexaceramide species in lpd-3 mutants, accompanied by up-regulation of hexaceramide biosynthetic enzymes, including HYL-1 (Homolog of Yeast Longevity). Reducing HYL-1 activity decreases INS-7 levels and rescues the lifespan of lpd-3 mutants through insulin receptor/DAF-2 and mTOR/LET-363. LPD3 antagonizes SINH-1, a key mTORC2 component, and decreases expression with age in wild type animals. We propose that LPD-3 acts as a megaprotein brake for aging and its age-dependent decline restricts lifespan through the sphingolipid-hexaceramide and insulin-mTOR pathways.

13.
Front Oncol ; 12: 1052221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505796

RESUMO

Introduction: Repeated hepatic arterial delivery of therapeutic agents to the liver by percutaneously implanted port-catheter systems has been widely used to treat unresectable liver cancer. This approach is applied to assess the therapeutic efficacy of repeated low-density lipoprotein-docosahexaenoic acid (LDL-DHA) nanoparticle treatments in a rat model of hepatocellular carcinoma. Methods: N1S1 hepatoma bearing rats underwent placement of a percutaneously implanted hepatic artery port-catheter system and were allocated to untreated, control LDL-triolein (LDL-TO) or LDL-DHA nanoparticle infusions groups. Treatments were performed every three days over a nine day study period. MRI was performed at baseline and throughout the study. At the end of the study tissue samples were collected for analyses. Results and Discussion: Implantation of the port catheters was successful in all rats. MRI showed that repeated infusions of LDL-DHA nanoparticles significantly impaired the growth of the rat hepatomas eventually leading to tumor regression. The tumors in the LDL-TO treated group showed delayed growth, while the untreated tumors grew steadily throughout the study. Histopathology and MRI support these findings demonstrating extensive tumor necrosis in LDL-DHA treated groups while the control groups displayed minor necrosis. Molecular and biochemical analyses also revealed that LDL-DHA treated tumors had increased levels of nuclear factor-kappa B and lipid peroxidation and depletion of glutathione peroxidase 4 relative to the control groups. Evidence of both ferroptosis and apoptosis tumor cell death was observed following LDL-DHA treatments. In conclusion repeated transarterial infusions of LDL-DHA nanoparticles provides sustained repression of tumor growth in a rat hepatoma model.

14.
Nat Commun ; 13(1): 6805, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357390

RESUMO

Cells adapt to cold by increasing levels of unsaturated phospholipids and membrane fluidity through conserved homeostatic mechanisms. Here we report an exceptionally large and evolutionarily conserved protein LPD-3 in C. elegans that mediates lipid trafficking to confer cold resilience. We identify lpd-3 mutants in a mutagenesis screen for genetic suppressors of the lipid desaturase FAT-7. LPD-3 bridges the endoplasmic reticulum (ER) and plasma membranes (PM), forming a structurally predicted hydrophobic tunnel for lipid trafficking. lpd-3 mutants exhibit abnormal phospholipid distribution, diminished FAT-7 abundance, organismic vulnerability to cold, and are rescued by Lecithin comprising unsaturated phospholipids. Deficient lpd-3 homologues in Zebrafish and mammalian cells cause defects similar to those observed in C. elegans. As mutations in BLTP1, the human orthologue of lpd-3, cause Alkuraya-Kucinskas syndrome, LPD-3 family proteins may serve as evolutionarily conserved highway bridges critical for ER-associated non-vesicular lipid trafficking and resilience to cold stress in eukaryotic cells.


Assuntos
Caenorhabditis elegans , Peixe-Zebra , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fosfolipídeos/metabolismo , Retículo Endoplasmático/metabolismo , Membrana Celular/metabolismo , Mamíferos/metabolismo
16.
Nat Commun ; 13(1): 4327, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882862

RESUMO

Mutant KRAS (KM), the most common oncogene in lung cancer (LC), regulates fatty acid (FA) metabolism. However, the role of FA in LC tumorigenesis is still not sufficiently characterized. Here, we show that KMLC has a specific lipid profile, with high triacylglycerides and phosphatidylcholines (PC). We demonstrate that FASN, the rate-limiting enzyme in FA synthesis, while being dispensable in EGFR-mutant or wild-type KRAS LC, is required for the viability of KMLC cells. Integrating lipidomic, transcriptomic and functional analyses, we demonstrate that FASN provides saturated and monounsaturated FA to the Lands cycle, the process remodeling oxidized phospholipids, such as PC. Accordingly, blocking either FASN or the Lands cycle in KMLC, promotes ferroptosis, a reactive oxygen species (ROS)- and iron-dependent cell death, characterized by the intracellular accumulation of oxidation-prone PC. Our work indicates that KM dictates a dependency on newly synthesized FA to escape ferroptosis, establishing a targetable vulnerability in KMLC.


Assuntos
Ferroptose , Neoplasias Pulmonares , Ferroptose/genética , Humanos , Metabolismo dos Lipídeos/genética , Lipogênese/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosfatidilcolinas , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
17.
Cell Mol Gastroenterol Hepatol ; 14(2): 465-493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35533983

RESUMO

BACKGROUND & AIMS: The intestine constantly interprets and adapts to complex combinations of dietary and microbial stimuli. However, the transcriptional strategies by which the intestinal epithelium integrates these coincident sources of information remain unresolved. We recently found that microbiota colonization suppresses epithelial activity of hepatocyte nuclear factor 4 nuclear receptor transcription factors, but their integrative regulation was unknown. METHODS: We compared adult mice reared germ-free or conventionalized with a microbiota either fed normally or after a single high-fat meal. Preparations of unsorted jejunal intestinal epithelial cells were queried using lipidomics and genome-wide assays for RNA sequencing and ChIP sequencing for the activating histone mark H3K27ac and hepatocyte nuclear factor 4 alpha. RESULTS: Analysis of lipid classes, genes, and regulatory regions identified distinct nutritional and microbial responses but also simultaneous influence of both stimuli. H3K27ac sites preferentially increased by high-fat meal in the presence of microbes neighbor lipid anabolism and proliferation genes, were previously identified intestinal stem cell regulatory regions, and were not hepatocyte nuclear factor 4 alpha targets. In contrast, H3K27ac sites preferentially increased by high-fat meal in the absence of microbes neighbor targets of the energy homeostasis regulator peroxisome proliferator activated receptor alpha, neighbored fatty acid oxidation genes, were previously identified enterocyte regulatory regions, and were hepatocyte factor 4 alpha bound. CONCLUSIONS: Hepatocyte factor 4 alpha supports a differentiated enterocyte and fatty acid oxidation program in germ-free mice, and that suppression of hepatocyte factor 4 alpha by the combination of microbes and high-fat meal may result in preferential activation of intestinal epithelial cell proliferation programs. This identifies potential transcriptional mechanisms for intestinal adaptation to multiple signals and how microbiota may modulate intestinal lipid absorption, epithelial cell renewal, and systemic energy balance.


Assuntos
Duodeno , Microbioma Gastrointestinal , Mucosa Intestinal , Animais , Duodeno/metabolismo , Duodeno/microbiologia , Ácidos Graxos/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lipídeos , Camundongos
18.
Proc Natl Acad Sci U S A ; 119(17): e2107189119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35467977

RESUMO

Iron-dependent peroxidation of polyunsaturated fatty acids (PUFAs) leads to ferroptosis. While detoxification reactions removing lipid peroxides in phospholipids such as that catalyzed by glutathione peroxidase 4 (GPX4) protect cells from ferroptosis, the mechanism through which cells prevent PUFA peroxidation was not completely understood. We previously identified Fas-associated factor 1 (FAF1) as a protein directly interacting with free PUFAs through its UAS domain. Here we report that this interaction is crucial to protect cells from ferroptosis. In the absence of FAF1, cultured cells became sensitive to ferroptosis upon exposure to physiological levels of PUFAs, and mice developed hepatic injury upon consuming a diet enriched in PUFA. Mechanistically, we demonstrate that FAF1 assembles a globular structure that sequesters free PUFAs into a hydrophobic core, a reaction that prevents PUFA peroxidation by limiting its access to iron. Our study suggests that peroxidation of free PUFAs contributes to ferroptosis, and FAF1 acts upstream of GPX4 to prevents initiation of ferroptosis by limiting peroxidation of free PUFAs.


Assuntos
Ferroptose , Animais , Morte Celular , Linhagem Celular , Células Cultivadas , Ácidos Graxos Insaturados/farmacologia , Camundongos
19.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34992143

RESUMO

Low-density lipoprotein (LDL) delivers cholesterol to mammalian cells through receptor-mediated endocytosis. The LDL cholesterol is liberated in lysosomes and transported to the plasma membrane (PM) and from there to the endoplasmic reticulum (ER). Excess ER cholesterol is esterified with a fatty acid for storage as cholesteryl esters. Recently, we showed that PM-to-ER transport of LDL cholesterol requires phosphatidylserine (PS). Others showed that PM-to-ER transport of cholesterol derived from other sources requires Asters (also called GRAMD1s), a family of three ER proteins that bridge between the ER and PM by binding to PS. Here, we use a cholesterol esterification assay and other measures of ER cholesterol delivery to demonstrate that Asters participate in PM-to-ER transport of LDL cholesterol in Chinese hamster ovary cells. Knockout of the gene encoding PTDSS1, the major PS-synthesizing enzyme, lowered LDL-stimulated cholesterol esterification by 85%, whereas knockout of all three Aster genes lowered esterification by 65%. The reduction was even greater (94%) when the genes encoding PTDSS1 and the three Asters were knocked out simultaneously. We conclude that Asters participate in LDL cholesterol delivery from PM to ER, and their action depends in large part, but not exclusively, on PS. The data also indicate that PS participates in another delivery pathway, so far undefined, that is independent of Asters.


Assuntos
LDL-Colesterol/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Animais , Transporte Biológico , Células CHO , Membrana Celular/metabolismo , Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Cricetinae , Cricetulus , Endocitose , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo
20.
J Matern Fetal Neonatal Med ; 35(25): 6615-6617, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33944655

RESUMO

Fetomaternal hemorrhage (FMH) is a known cause of neonatal anemia due to fetal blood loss to the maternal circulation, occurring when the maternal-fetal barrier is disrupted. Several causes must be considered, although in most cases the etiology remains unknown. Intraplacental choriocarcinoma (ICC) is a rare entity and has been related with massive FMH, intrauterine fetal demise, severe neonatal anemia and metastatic choriocarcinoma in both mother and infant. There are 25 cases of histopathologically confirmed ICC complicated with FMH described in the literature. Because FMH occurs unexpectedly and the majority of patients with ICC are asymptomatic, this diagnosis may be missed. Once FMH is confirmed, underlying malignancy should be kept in mind. The authors present a case report of severe neonatal anemia following FMH related to ICC and highlight the importance of serum ß-hCG monitoring in cases of massive FMH.


Assuntos
Anemia Neonatal , Coriocarcinoma , Doenças Fetais , Transfusão Feto-Materna , Gravidez , Recém-Nascido , Feminino , Humanos , Transfusão Feto-Materna/complicações , Transfusão Feto-Materna/diagnóstico , Coriocarcinoma/complicações , Coriocarcinoma/diagnóstico , Coriocarcinoma/patologia , Anemia Neonatal/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA