Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 133(2): 422-435, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35352442

RESUMO

AIM: The objective of this research was to screen fungal isolates originally isolated from cotton plants and measure their effects on the interactions between soybean and two aboveground pests (cabbage looper; Trichoplusia ni and soybean looper; Chrysodeixis includens) as well as a belowground pest (soybean cyst nematode; Heterodera glycines). METHODS AND RESULTS: For aboveground pests, we measured the leaf area consumed and larval weight. For our belowground pest tests, we measured shoot height, shoot fresh weight, root fresh weight and number of cysts. Out of the 50 fungal isolates tested, we tested 30 fungi in the interaction with cabbage looper, 36 for soybean looper, 41 for soybean cyst nematode. We tested 23 isolates against all pests and identified multiple isolates that significantly changed the response of pests on inoculated soybean plants versus controls. CONCLUSIONS: We identified three fungal isolates that significantly reduced both leaf area consumed aboveground by caterpillars and number of cysts produced belowground by nematodes. These isolates were an Epicoccum italicum, a Chaetomium undulatum and a Stemphylium majusculum. SIGNIFICANCE AND IMPACT OF STUDY: Overall, this study provides important insights into plant-fungal interactions and their effect on both above- and belowground pests. This study also highlights an important first step towards harnessing the potential of microbial inoculates as a tool for integrated pest management in soybeans.


Assuntos
Cistos , Fabaceae , Mariposas , Tylenchoidea , Animais , Fungos , Glycine max
2.
Plants (Basel) ; 11(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35161264

RESUMO

Plants allocate their limited resources toward different physiological processes, dynamically adjusting their resource allocation in response to environmental changes. How beneficial plant-associated microbes influence this allocation is a topic that continues to interest plant biologists. In this study, we examined the effect of a beneficial fungus, Phialemonium inflatum, on investment in growth and anti-herbivore resistance traits in cucumber plants (Cucumis sativus). We inoculated cucumber seeds with P. inflatum spores and measured several growth parameters, including germination rate, above and belowground biomass, and number of flowers. We also examined plant resistance to adult and larval striped cucumber beetles (Acalymma vitattum), and quantified levels of defense hormones in leaves and roots. Our results indicate that P. inflatum strongly enhances cucumber plant growth and reproductive potential. Although fungus treatment did not improve plant resistance to cucumber beetles, inoculated plants were more tolerant to root herbivory, experiencing less biomass reduction. Together, these findings document how a beneficial plant-associated fungus shifts plant investment in growth over herbivore resistance, highlighting the importance of microbes in mediating plant-herbivore interactions. These findings also have important implications for agricultural systems, where beneficial microbes are often introduced or managed to promote plant growth or enhance resistance.

3.
J Microbiol Methods ; 186: 106237, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33984390

RESUMO

A simple method for fungal epiphyte microscopic observations and preservation is described. A two-part clear casting resin, cotton leaves and two species of fungi were used to validate this protocol. We obtained very detailed images of fungal structures using this approach in addition to retaining the impressions for future reference.


Assuntos
Beauveria/isolamento & purificação , Endófitos/isolamento & purificação , Microscopia/métodos , Folhas de Planta/microbiologia , Sordariales/isolamento & purificação , Beauveria/citologia , Endófitos/classificação , Endófitos/genética , Gossypium/microbiologia , Microscopia/instrumentação , Folhas de Planta/química , Resinas Sintéticas/química , Sordariales/citologia
4.
PLoS One ; 8(6): e66049, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776604

RESUMO

Studies of fungi in upland cotton (Gossypium hirsutum) cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides) and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey provides candidates for further evaluation as potential management tools against a variety of pests and diseases when present as endophytes in cotton and other plants.


Assuntos
Endófitos/genética , Fungos/genética , Gossypium/microbiologia , DNA Fúngico/genética , Endófitos/classificação , Fungos/classificação , Folhas de Planta/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA