Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 114(1): 220-225, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37486092

RESUMO

Wheat blast, caused by the Pyricularia oryzae Triticum lineage (PoT), first emerged in Brazil and quickly spread to neighboring countries. Its recent appearance in Bangladesh and Zambia highlights a need to understand the disease's population biology and epidemiology so as to mitigate pandemic outbreaks. Current knowledge is mostly based on characterizations of Brazilian wheat blast isolates and comparison with isolates from non-wheat, endemic grasses. These foregoing studies concluded that the wheat blast population lacks host specificity and, as a result, undergoes extensive gene flow with populations infecting non-wheat hosts. Additionally, based on genetic similarity between wheat blast and isolates infecting Urochloa species, it was proposed that the disease originally emerged via a host jump from this grass and that Urochloa likely plays a central role in wheat blast epidemiology owing to its widespread use as a pasture grass. However, due to inconsistencies with broader phylogenetic studies, we suspected that these seminal studies had not actually sampled the populations normally found on endemic grasses and, instead, had repeatedly isolated members of PoT and the related Lolium pathogen lineage (PoL1). Re-analysis of the Brazilian data as part of a comprehensive, global, phylogenomic dataset that included a small number of South American isolates sampled away from wheat confirmed our suspicion and identified four new P. oryzae lineages on grass hosts. As a result, the conclusions underpinning current understanding in wheat blast's evolution, population biology, and epidemiology are unsubstantiated and could be equivocal.


Assuntos
Ascomicetos , Magnaporthe , Triticum , Triticum/genética , Filogenia , Doenças das Plantas/genética , Poaceae
2.
New Phytol ; 241(3): 1266-1276, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984076

RESUMO

The fungal pathogen, Magnaporthe oryzae Triticum pathotype, causing wheat blast disease was first identified in South America and recently spread across continents to South Asia and Africa. Here, we studied the genetic relationship among isolates found on the three continents. Magnaporthe oryzae strains closely related to a South American field isolate B71 were found to have caused the wheat blast outbreaks in South Asia and Africa. Genomic variation among isolates from the three continents was examined using an improved B71 reference genome and whole-genome sequences. We found strong evidence to support that the outbreaks in Bangladesh and Zambia were caused by the introductions of genetically separated isolates, although they were all close to B71 and, therefore, collectively referred to as the B71 branch. In addition, B71 branch strains carried at least one supernumerary mini-chromosome. Genome assembly of a Zambian strain revealed that its mini-chromosome was similar to the B71 mini-chromosome but with a high level of structural variation. Our findings show that while core genomes of the multiple introductions are highly similar, the mini-chromosomes have undergone marked diversification. The maintenance of the mini-chromosome and rapid genomic changes suggest the mini-chromosomes may serve important virulence or niche adaptation roles under diverse environmental conditions.


Assuntos
Ascomicetos , Magnaporthe , Triticum , Triticum/genética , Bangladesh/epidemiologia , Zâmbia/epidemiologia , Magnaporthe/genética , Cromossomos , Doenças das Plantas/microbiologia
3.
Nat Ecol Evol ; 7(12): 2055-2066, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945944

RESUMO

Most plant pathogens exhibit host specificity but when former barriers to infection break down, new diseases can rapidly emerge. For a number of fungal diseases, there is increasing evidence that hybridization plays a major role in driving host jumps. However, the relative contributions of existing variation versus new mutations in adapting to new host(s) is unclear. Here we reconstruct the evolutionary history of two recently emerged populations of the fungus Pyricularia oryzae that are responsible for two new plant diseases: wheat blast and grey leaf spot of ryegrasses. We provide evidence that wheat blast/grey leaf spot evolved through two distinct mating episodes: the first occurred ~60 years ago, when a fungal individual adapted to Eleusine mated with another individual from Urochloa. Then, about 10 years later, a single progeny from this cross underwent a series of matings with a small number of individuals from three additional host-specialized populations. These matings introduced non-functional alleles of two key host-specificity factors, whose recombination in a multi-hybrid swarm probably facilitated the host jump. We show that very few mutations have arisen since the founding event and a majority are private to individual isolates. Thus, adaptation to the wheat or Lolium hosts appears to have been instantaneous, and driven entirely by selection on repartitioned standing variation, with no obvious role for newly formed mutations.


Assuntos
Magnaporthe , Humanos , Magnaporthe/genética , Pandemias , Poaceae , Mutação , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/microbiologia
4.
Trends Plant Sci ; 28(11): 1214-1217, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586981

RESUMO

Recent findings demonstrate that cytoplasmic effectors from fungal and oomycete pathogens enter plant cells via clathrin-mediated endocytosis (CME). This raises several questions: Does effector secretion pathway facilitate host uptake? How is CME triggered in host cells? How are the effectors released from endosomal compartments to reach diverse subcellular destinations?

5.
Plant Cell ; 35(7): 2527-2551, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-36976907

RESUMO

Fungi and oomycetes deliver effectors into living plant cells to suppress defenses and control plant processes needed for infection. Little is known about the mechanism by which these pathogens translocate effector proteins across the plasma membrane into the plant cytoplasm. The blast fungus Magnaporthe oryzae secretes cytoplasmic effectors into a specialized biotrophic interfacial complex (BIC) before translocation. Here, we show that cytoplasmic effectors within BICs are packaged into punctate membranous effector compartments that are occasionally observed in the host cytoplasm. Live cell imaging with fluorescently labeled proteins in rice (Oryza sativa) showed that these effector puncta colocalize with the plant plasma membrane and with CLATHRIN LIGHT CHAIN 1, a component of clathrin-mediated endocytosis (CME). Inhibiting CME using virus-induced gene silencing and chemical treatments resulted in cytoplasmic effectors in swollen BICs lacking effector puncta. By contrast, fluorescent marker colocalization, gene silencing, and chemical inhibitor studies failed to support a major role for clathrin-independent endocytosis in effector translocation. Effector localization patterns indicated that cytoplasmic effector translocation occurs underneath appressoria before invasive hyphal growth. Taken together, this study provides evidence that cytoplasmic effector translocation is mediated by CME in BICs and suggests a role for M. oryzae effectors in coopting plant endocytosis.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Oryza/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/metabolismo , Doenças das Plantas/microbiologia
6.
Plant Dis ; 107(8): 2407-2416, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36691278

RESUMO

Wheat blast, caused by the fungus Magnaporthe oryzae Triticum pathotype (MoT), is a devastating disease affecting South America, Bangladesh, and Zambia. Resistance to wheat blast has strongly relied on the 2NvS translocation; however, newer MoT isolates have increased aggressiveness, threatening the 2NvS translocation's effectiveness and durability. To identify genomic regions associated with wheat blast resistance, we performed a quantitative trait loci (QTL) mapping study using 187 double-haploid (DH) lines from a cross between the Brazilian wheat cultivars 'TBIO Alvorada' and 'TBIO Sossego', which are moderately resistant and susceptible to blast, respectively. The DH population was evaluated in a greenhouse in Brazil and Bolivia, and field conditions in Bolivia. Contrasting models best explained the relationship between traits evaluated according to differences in disease levels and the presence of the 2NvS. A large effect-locus, derived from 'TBIO Sossego', was identified on chromosome 2AS, which was confirmed to be 2NvS translocation and explained 33.5 to 82.4% of the phenotypic variance. Additional significant loci were identified on 5AL, 1DS, 4DS, 5DL, and 6DL chromosome arms with phenotypic variance <6%, but they were not consistent across trait-environment combinations. QTL pyramiding analyses showed that some specific loci had an additive effect when combined with the 2NvS, suggesting that stacking multiple loci may be an effective strategy to help manage wheat blast. The markers associated with the 2NvS can be used as dominant diagnostic markers for this alien translocation. Additional characterization of these loci using a broader set of MoT isolates is critical to validate their effectiveness against current MoT populations.


Assuntos
Locos de Características Quantitativas , Triticum , Locos de Características Quantitativas/genética , Triticum/genética , Triticum/microbiologia , Mapeamento Cromossômico , Brasil
7.
Nat Commun ; 13(1): 7168, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418866

RESUMO

CRISPR-Cas mediated genome engineering has revolutionized functional genomics. However, understanding of DNA repair following Cas-mediated DNA cleavage remains incomplete. Using Cas12a ribonucleoprotein genome editing in the fungal pathogen, Magnaporthe oryzae, we detail non-canonical DNA repair outcomes from hundreds of transformants. Sanger and nanopore sequencing analysis reveals significant variation in DNA repair profiles, ranging from small INDELs to kilobase size deletions and insertions. Furthermore, we find the frequency of DNA repair outcomes varies between loci. The results are not specific to the Cas-nuclease or selection procedure. Through Ku80 deletion analysis, a key protein required for canonical non-homologous end joining, we demonstrate activity of an alternative end joining mechanism that creates larger DNA deletions, and uses longer microhomology compared to C-NHEJ. Together, our results suggest preferential DNA repair pathway activity in the genome that can create different mutation profiles following repair, which could create biased genome variation and impact genome engineering and genome evolution.


Assuntos
Sistemas CRISPR-Cas , Quebras de DNA de Cadeia Dupla , Sistemas CRISPR-Cas/genética , Mutação , DNA/genética
8.
Plant Biotechnol J ; 20(9): 1819-1832, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35656643

RESUMO

Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 from Arabidopsis thaliana (AtGRXS17) can provide thermotolerance in maize through enhanced chaperone activity and modulation of heat stress-associated gene expression. The thermotolerant maize lines had increased protection against protein damage and yielded a sixfold increase in grain production in comparison to the non-transgenic counterparts under heat stress field conditions. The maize lines also displayed thermotolerance in the reproductive stages, resulting in improved pollen germination and the higher fidelity of fertilized ovules under heat stress conditions. Our results present a robust and simple strategy for meeting rising yield demands in maize and, possibly, other crop species in a warming global environment.


Assuntos
Arabidopsis , Termotolerância , Arabidopsis/genética , Grão Comestível/genética , Oxirredução , Termotolerância/genética , Zea mays/genética
9.
Plant Dis ; 106(6): 1700-1712, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34931892

RESUMO

Wheat blast (WB), caused by Magnaporthe oryzae Triticum pathotype, recently emerged as a destructive disease that threatens global wheat production. Because few sources of genetic resistance have been identified in wheat, genetic transformation of wheat with rice blast resistance genes could expand resistance to WB. We evaluated the presence/absence of homologs of rice blast effector genes in Triticum isolates with the aim of identifying avirulence genes in field populations whose cognate rice resistance genes could potentially confer resistance to WB. We also assessed presence of the wheat pathogen AVR-Rmg8 gene and identified new alleles. A total of 102 isolates collected in Brazil, Bolivia, and Paraguay from 1986 to 2018 were evaluated by PCR using 21 pairs of gene-specific primers. Effector gene composition was highly variable, with homologs to AvrPiz-t, AVR-Pi9, AVR-Pi54, and ACE1 showing the highest amplification frequencies (>94%). We identified Triticum isolates with a functional AvrPiz-t homolog that triggers Piz-t-mediated resistance in the rice pathosystem and produced transgenic wheat plants expressing the rice Piz-t gene. Seedlings and heads of the transgenic lines were challenged with isolate T25 carrying functional AvrPiz-t. Although slight decreases in the percentage of diseased spikelets and leaf area infected were observed in two transgenic lines, our results indicated that Piz-t did not confer useful WB resistance. Monitoring of avirulence genes in populations is fundamental to identifying effective resistance genes for incorporation into wheat by conventional breeding or transgenesis. Based on avirulence gene distributions, rice resistance genes Pi9 and Pi54 might be candidates for future studies.


Assuntos
Resistência à Doença , Doenças das Plantas , Ascomicetos , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
10.
Nat Microbiol ; 6(11): 1383-1397, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707224

RESUMO

Rice blast is a devastating disease caused by the fungal pathogen Magnaporthe oryzae that threatens rice production around the world. The fungus produces a specialized infection cell, called the appressorium, that enables penetration through the plant cell wall in response to surface signals from the rice leaf. The underlying biology of plant infection, including the regulation of appressorium formation, is not completely understood. Here we report the identification of a network of temporally coregulated transcription factors that act downstream of the Pmk1 mitogen-activated protein kinase pathway to regulate gene expression during appressorium-mediated plant infection. We show that this tiered regulatory mechanism involves Pmk1-dependent phosphorylation of the Hox7 homeobox transcription factor, which regulates genes associated with induction of major physiological changes required for appressorium development-including cell-cycle control, autophagic cell death, turgor generation and melanin biosynthesis-as well as controlling a additional set of virulence-associated transcription factor-encoding genes. Pmk1-dependent phosphorylation of Mst12 then regulates gene functions involved in septin-dependent cytoskeletal re-organization, polarized exocytosis and effector gene expression, which are necessary for plant tissue invasion. Identification of this regulatory cascade provides new potential targets for disease intervention.


Assuntos
Ascomicetos/enzimologia , Proteínas Fúngicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/enzimologia , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Esporos Fúngicos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência
11.
Methods Mol Biol ; 2356: 1-18, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236673

RESUMO

Rice blast disease is both the most explosive and potentially damaging disease of the world's rice (Oryza sativa) crop and a model system for research on the molecular mechanisms that fungi use to cause plant disease. The blast fungus, Magnaporthe oryzae, is highly evolved to sense when it is on a leaf surface; to develop a pressurized cell, the appressorium, to punch through the leaf cuticle; and then to hijack living rice cells to assist it in causing disease. Host specificity, determining which plants particular fungal strains can infect, is also an important topic for research. The blast fungus is a moving target, quickly overcoming rice resistance genes we deploy to control it, and recently emerging to cause devastating disease on an entirely new cereal crop, wheat. M. oryzae is highly adaptable, with multiple examples of genetic instability at certain gene loci and in certain genomic regions. Understanding the biology of the fungus in the field, and its potential for genetic and genome variability, is key to keep it from adapting to life in the research laboratory and losing relevance to the significant impact it has on global food security.


Assuntos
Doenças das Plantas , Grão Comestível , Magnaporthe , Oryza , Folhas de Planta
12.
Methods Mol Biol ; 2356: 69-77, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236677

RESUMO

Pharmacological approaches have made a tremendous impact on the field of microbial secretion systems. This protocol describes the inhibition of Golgi-dependent secretion in Magnaporthe oryzae though brefeldin A (BFA) treatment. State-of-the-art live-cell imaging allows tracking secreted proteins in their secretion pathways. Here we applied this protocol for defining the secretion systems of two fluorescently labeled effectors, Bas4 (apoplastic) and Pwl2 (cytoplasmic). Secretion of Bas4 is clearly inhibited by brefeldin A (BFA), indicating its Golgi-dependent secretion pathway. By contrast, secretion of Pwl2 is BFA insensitive and follows a nonconventional secretion pathway that is Snare and Exocyst dependent. The protocol is suitable to other plant-microbial systems and in vitro secreted microbial proteins.


Assuntos
Magnaporthe , Ascomicetos , Brefeldina A/farmacologia , Citoplasma , Complexo de Golgi , Proteínas
13.
Plant Dis ; 105(1): 96-107, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33197378

RESUMO

Epidemics of wheat blast, caused the Triticum pathotype of Magnaporthe oryzae, were studied in the Santa Cruz del la Sierra region of Bolivia to quantify and compare the temporal dynamics of the disease under different growing conditions. Six plots of a susceptible wheat cultivar were planted at Cuatro Cañadas (CC), Okinawa 1 (OK1), and Okinawa 2 (OK2) in 2015. Spike blast incidence (INC) and severity (SEV) and leaf blast severity (LEAF) were quantified in each plot at regular intervals on a 10 × 10 grid (n = 100 clusters of spikes), beginning at head emergence (Feekes growth stage 10.5), for a total of nine assessments at CC, six at OK1, and six at OK2. Spike blast increased over time for 20 to 30 days before approaching a mean INC of 100% and a mean SEV of 60 to 75%. The logistic model was the most appropriate for describing the temporal dynamics of spike blast. The highest absolute rates of disease increase occurred earliest at OK1 and latest at OK2, and in all cases it coincided with major rain events. Estimated y0 values (initial blast intensity) were significantly (P < 0.05) higher at OK1 than at CC or OK2, whereas rL values (the logistic rate parameter) were significantly higher at OK2 than at CC or OK1. It took about 10 fewer days for SEV to reach 10, 15, or 20% at OK1 compared with OK2 and CC. Based on survival analyses, the survivor functions for time to 10, 15 and 20% SEV (ts) were significantly different between OK1 and the other locations, with the probabilities of SEV reaching the thresholds being highest at OK1. LEAF at 21 days after Feekes 10.5 had a significant effect on ts at OK1. For every 5% increase in LEAF, the chance of SEV reaching the thresholds by day 21 increased by 30 to 55%.


Assuntos
Epidemias , Magnaporthe , Ascomicetos , Bolívia , Doenças das Plantas , Triticum
14.
NAR Genom Bioinform ; 2(3): lqaa075, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33575622

RESUMO

Genome sequences provide genomic maps with a single-base resolution for exploring genetic contents. Sequencing technologies, particularly long reads, have revolutionized genome assemblies for producing highly continuous genome sequences. However, current long-read sequencing technologies generate inaccurate reads that contain many errors. Some errors are retained in assembled sequences, which are typically not completely corrected by using either long reads or more accurate short reads. The issue commonly exists, but few tools are dedicated for computing error rates or determining error locations. In this study, we developed a novel approach, referred to as k-mer abundance difference (KAD), to compare the inferred copy number of each k-mer indicated by short reads and the observed copy number in the assembly. Simple KAD metrics enable to classify k-mers into categories that reflect the quality of the assembly. Specifically, the KAD method can be used to identify base errors and estimate the overall error rate. In addition, sequence insertion and deletion as well as sequence redundancy can also be detected. Collectively, KAD is valuable for quality evaluation of genome assemblies and, potentially, provides a diagnostic tool to aid in precise error correction. KAD software has been developed to facilitate public uses.

15.
Plant Dis ; 104(1): 35-43, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31660799

RESUMO

Wheat head blast (WHB), caused by the fungus Magnaporthe oryzae pathotype triticum, is a devastating disease affecting South America and South Asia. Despite 30 years of intensive effort, the 2NVS translocation from Aegilops ventricosa contains the only useful source of resistance to WHB effective against M. oryzae triticum isolates. The objective of this study was to identify non-2NVS sources of resistance to WHB among elite cultivars, breeding lines, landraces, and wild-relative accessions. Over 780 accessions were evaluated under field and greenhouse conditions in Bolivia, greenhouse conditions in Brazil, and at two biosafety level-3 laboratories in the United States. The M. oryzae triticum isolates B-71 (2012), 008 (2015), and 16MoT001 (2016) were used for controlled experiments, while isolate 008 was used for field experiments. Resistant and susceptible checks were included in all experiments. Under field conditions, susceptible spreaders were inoculated at the tillering stage to guarantee sufficient inoculum. Disease incidence and severity were evaluated as the average rating for each 1-m-row plot. Under controlled conditions, heads were inoculated after full emergence and individually rated for percentage of diseased spikelets. The diagnostic marker Ventriup-LN2 was used to test for the presence of the 2NVS translocation. Four non-2NVS spring wheat International Maize and Wheat Improvement Center breeding lines (CM22, CM49, CM52, and CM61) and four wheat wild-relatives (A. tauschii TA10142, TA1624, TA1667, and TA10140) were identified as resistant (<5% of severity) or moderately resistant (5 to <25% severity) to WHB. Experiments conducted at the seedling stage showed little correlation with disease severity at the head stage. M. oryzae triticum isolate 16MoT001 was significantly more aggressive against 2NVS-based varieties. The low frequency of WHB resistance and the increase in aggressiveness of newer M. oryzae triticum isolates highlight the threat that the disease poses to wheat production worldwide and the urgent need to identify and characterize new resistance genes that can be used in breeding for durably resistant varieties.


Assuntos
Resistência à Doença , Triticum , Ásia , Bolívia , Brasil , Cruzamento , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
16.
PLoS Genet ; 15(9): e1008272, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31513573

RESUMO

Newly emerged wheat blast disease is a serious threat to global wheat production. Wheat blast is caused by a distinct, exceptionally diverse lineage of the fungus causing rice blast disease. Through sequencing a recent field isolate, we report a reference genome that includes seven core chromosomes and mini-chromosome sequences that harbor effector genes normally found on ends of core chromosomes in other strains. No mini-chromosomes were observed in an early field strain, and at least two from another isolate each contain different effector genes and core chromosome end sequences. The mini-chromosome is enriched in transposons occurring most frequently at core chromosome ends. Additionally, transposons in mini-chromosomes lack the characteristic signature for inactivation by repeat-induced point (RIP) mutation genome defenses. Our results, collectively, indicate that dispensable mini-chromosomes and core chromosomes undergo divergent evolutionary trajectories, and mini-chromosomes and core chromosome ends are coupled as a mobile, fast-evolving effector compartment in the wheat pathogen genome.


Assuntos
Micoses/genética , Doenças das Plantas/genética , Triticum/genética , Ascomicetos/genética , Cromossomos Fúngicos , Rearranjo Gênico/genética , Genoma Fúngico/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Poaceae/genética , Fatores de Transcrição/genética
17.
mBio ; 10(4)2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363034

RESUMO

Precise kinetochore-microtubule interactions ensure faithful chromosome segregation in eukaryotes. Centromeres, identified as scaffolding sites for kinetochore assembly, are among the most rapidly evolving chromosomal loci in terms of the DNA sequence and length and organization of intrinsic elements. Neither the centromere structure nor the kinetochore dynamics is well studied in plant-pathogenic fungi. Here, we sought to understand the process of chromosome segregation in the rice blast fungus Magnaporthe oryzae High-resolution imaging of green fluorescent protein (GFP)-tagged inner kinetochore proteins CenpA and CenpC revealed unusual albeit transient declustering of centromeres just before anaphase separation of chromosomes in M. oryzae Strikingly, the declustered centromeres positioned randomly at the spindle midzone without an apparent metaphase plate per se Using CenpA chromatin immunoprecipitation followed by deep sequencing, all seven centromeres in M. oryzae were found to be regional, spanning 57-kb to 109-kb transcriptionally poor regions. Highly AT-rich and heavily methylated DNA sequences were the only common defining features of all the centromeres in rice blast. Lack of centromere-specific DNA sequence motifs or repetitive elements suggests an epigenetic specification of centromere function in M. oryzae PacBio genome assemblies and synteny analyses facilitated comparison of the centromeric/pericentromeric regions in distinct isolates of rice blast and wheat blast and in Magnaporthiopsis poae Overall, this study revealed unusual centromere dynamics and precisely identified the centromere loci in the top model fungal pathogens that belong to Magnaporthales and cause severe losses in the global production of food crops and turf grasses.IMPORTANCEMagnaporthe oryzae is an important fungal pathogen that causes a loss of 10% to 30% of the annual rice crop due to the devastating blast disease. In most organisms, kinetochores are clustered together or arranged at the metaphase plate to facilitate synchronized anaphase separation of sister chromatids in mitosis. In this study, we showed that the initially clustered kinetochores separate and position randomly prior to anaphase in M. oryzae Centromeres in M. oryzae occupy large genomic regions and form on AT-rich DNA without any common sequence motifs. Overall, this study identified atypical kinetochore dynamics and mapped functional centromeres in M. oryzae to define the roles of centromeric and pericentric boundaries in kinetochore assembly on epigenetically specified centromere loci. This study should pave the way for further understanding of the contribution of heterochromatin in genome stability and virulence of the blast fungus and its related species of high economic importance.


Assuntos
Centrômero/metabolismo , Cinetocoros/metabolismo , Centrômero/genética , Grão Comestível/metabolismo , Magnaporthe/patogenicidade
19.
Genetics ; 211(1): 151-167, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446520

RESUMO

The pathogenic life cycle of the rice blast fungus Magnaporthe oryzae involves a series of morphogenetic changes, essential for its ability to cause disease. The smo mutation was identified > 25 years ago, and affects the shape and development of diverse cell types in M. oryzae, including conidia, appressoria, and asci. All attempts to clone the SMO1 gene by map-based cloning or complementation have failed over many years. Here, we report the identification of SMO1 by a combination of bulk segregant analysis and comparative genome analysis. SMO1 encodes a GTPase-activating protein, which regulates Ras signaling during infection-related development. Targeted deletion of SMO1 results in abnormal, nonadherent conidia, impaired in their production of spore tip mucilage. Smo1 mutants also develop smaller appressoria, with a severely reduced capacity to infect rice plants. SMO1 is necessary for the organization of microtubules and for septin-dependent remodeling of the F-actin cytoskeleton at the appressorium pore. Smo1 physically interacts with components of the Ras2 signaling complex, and a range of other signaling and cytoskeletal components, including the four core septins. SMO1 is therefore necessary for the regulation of RAS activation required for conidial morphogenesis and septin-mediated plant infection.


Assuntos
Proteínas Fúngicas/genética , Magnaporthe/genética , Receptor Smoothened/genética , Esporos Fúngicos/crescimento & desenvolvimento , Citoesqueleto de Actina/metabolismo , Proteínas Fúngicas/metabolismo , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/patogenicidade , Microtúbulos/metabolismo , Morfogênese , Oryza/microbiologia , Septinas/metabolismo , Transdução de Sinais , Receptor Smoothened/metabolismo , Esporos Fúngicos/genética , Virulência/genética
20.
Phytopathology ; 109(4): 509-511, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30565503

RESUMO

This is a response to a recent Letter to the Editor of Phytopathology, in which Gupta et al. (2019) caution against the indiscriminate use of the MoT3 diagnostic assay that distinguishes isolates of Magnaporthe oryzae in the Triticum lineage from those that do not cause aggressive wheat blast. We confirm that the assay does reliably distinguish between wheat and rice isolates from Bangladesh and worldwide, as described in the original paper by Pieck et al. (2017) . We have been unable to reproduce the equally intense amplification of WB12 and WB12-like sequences reported in Figure 1 of the Letter. Other data presented by Gupta et al. (2019) support the specificity of the MoT3 assay. Therefore, cautions beyond those always associated with accurate reproduction of diagnostic assays are unwarranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA