Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cytotechnology ; : 873-879, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31250233

RESUMO

Culturing cells as adherent monolayers is a common approach in cell biology. For cell culture experiments to yield reliable results it is important to replicate in vivo conditions as faithfully as possible. Increasingly, researchers appreciate the importance of oxygen in cell physiology and the corresponding need to maintain physiologically relevant oxygen levels during experiments. However, although oxygen levels are sometimes monitored over the course of an experiment, this is virtually always in the incubator gas phase and not in the media bathing cells. When incubator oxygen levels are set to a physiologically appropriate level, typically 2-6%, the pericellular oxygen levels experienced by cells may be substantially lower, particularly under conditions where cells are respiring rapidly. We have developed a simple approach to prevent this problem. 'Hypoxio' is a software application that uses real time measurements of pericellular oxygen to coordinate media mixing via a tilt table. Hypoxio allows the user to set a threshold below which it initiates a mixing cycle of user-adjustable duration to abolish standing gradients associated with pericellular hypoxia. Here we describe Hypoxio, demonstrate its efficacy, and direct the reader to our GitHub site for downloadabale software and a description of hardware.

2.
Antioxidants (Basel) ; 7(11)2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400646

RESUMO

Resveratrol is a plant-derived polyphenol that has been widely studied for its putative health promoting effects. Many of those studies have been conducted in cell culture, in supra-physiological levels of oxygen and glucose. Resveratrol interacts with reactive oxygen species (ROS) as an antioxidant or pro-oxidant. Resveratrol affects the expression and activities of ROS-producing enzymes and organelles. It is therefore important to consider how cell culture conditions might determine the effects of resveratrol on cultured cells. We determined the effects of resveratrol on cell growth, hydrogen peroxide production, and mitochondrial network characteristics in C2C12 mouse myoblasts and PC3 human prostate cancer cells under conditions of physiological (5%) and supra-physiological (18%) oxygen, and normo- (5 mM) and hyper-glycemia (25 mM). Interestingly, most effects of resveratrol on the parameters measured here were dependent upon prevailing oxygen and glucose levels during the experiment. Many of the effects of resveratrol on cell growth, hydrogen peroxide production, and mitochondrial network characteristics that were seen in 25 mM glucose and/or 18% oxygen were absent under the physiologically relevant conditions of 5 mM glucose with 5% oxygen. These findings emphasize the importance of using physiologically meaningful starting conditions for cell-culture experiments with resveratrol and indeed any manipulation affecting ROS metabolism and mitochondria.

3.
Biochem Biophys Res Commun ; 485(2): 249-254, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235489

RESUMO

Resveratrol (RES) is a plant-derived stilbene associated with a wide range of health benefits. Mitochondria are a key downstream target of RES, and in some cell types RES promotes mitochondrial biogenesis, altered cellular redox status, and a shift toward oxidative metabolism. Mitochondria exist as a dynamic network that continually remodels via fusion and fission processes, and the extent of fusion is related to cellular redox status and metabolism. We investigated RES's effects on mitochondrial network morphology in several cell lines using a quantitative approach to measure the extent of network fusion. 48 h continuous treatment with 10-20 µM RES stimulated mitochondrial fusion in C2C12 myoblasts, PC3 cancer cells, and mouse embryonic fibroblasts stimulated significant increases in fusion in all instances, resulting in larger and more highly branched mitochondrial networks. Mitofusin-2 (Mfn2) is a key protein facilitating mitochondrial fusion, and its expression was also stimulated by RES. Using Mfn2-null cells we demonstrated that RES's effects on mitochondrial fusion, cellular respiration rates, and cell growth are all dependent upon the presence of Mfn2. Taken together, these results demonstrate that Mfn2 and mitochondrial fusion are affected by RES in ways that appear to relate to RES's known effects on cellular metabolism and growth.


Assuntos
Antioxidantes/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Estilbenos/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , GTP Fosfo-Hidrolases/genética , Deleção de Genes , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Resveratrol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA