Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(23): 64576-64588, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37071353

RESUMO

Microplastics (MPs) are increasingly being studied because they have become ubiquitous in aquatic and terrestrial environments. However, little is known about the negative effects of co-contamination by polypropylene microplastic (PP MPs) and heavy metal mixtures on terrestrial environment and biota. This study assessed the adverse effects of co-exposure to PP MPs and heavy metal mixture (Cu2+, Cr6+, and Zn2+) on soil quality and the earthworm Eisenia fetida. Soil samples were collected in the Dong Cao catchment, near Hanoi, Vietnam, and analyzed for changes in extracellular enzyme activity and carbon, nitrogen, and phosphorus availability in the soil. We determined the survival rate of earthworms Eisenia fetida that had ingested MPs and two doses of heavy metals (the environmental level - 1 × - and its double - 2 ×). Earthworm ingestion rates were not significantly impacted by the exposure conditions, but the mortality rate for the 2 × exposure conditions was 100%. Metal-associated PP MPs stimulated the activities of ß-glucosidase, ß-N-acetyl glucosaminidase, and phosphatase enzymes in soil. Principle component analysis showed that these enzymes were positively correlated with Cu2+ and Cr6+ concentrations, but negatively correlated with microbial activity. Zn2+ showed no correlation with soil extracellular enzyme activity or soil microbial activity. Our results showed that co-exposure of earthworms to MPs and heavy metals had no impact on soil nitrogen and phosphorus but caused a decrease in total soil carbon content, with a possible associated risk of increased CO2 emissions.


Assuntos
Metais Pesados , Oligoquetos , Poluentes do Solo , Animais , Microplásticos , Plásticos , Solo , Carbono/farmacologia , Poluentes do Solo/análise , Metais Pesados/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-33635452

RESUMO

In tropical montane South-East Asia, recent changes in land use have induced increased runoff, soil erosion and in-stream suspended sediment loads. Land use change is also contributing to increased microbial pathogen dissemination and contamination of stream waters. Escherichia coli (E. coli) is frequently used as an indicator of faecal contamination. Field rain simulations were conducted to examine how E. coli is exported from the surface of upland, agricultural soils during runoff events. The objectives were to characterize the loss dynamics of this indicator from agricultural soils contaminated with livestock waste, and to identify the effect of splash on washoff. Experiments were performed on nine 1 m2 plots, amended or not with pig or poultry manure. Each plot was divided into two 0.5 m2 sub-plots. One of the two sub-plots was protected with a mosquito net for limiting the raindrop impact effects. Runoff, soil detachment by raindrop impact and its entrainment by runoff, and E. coli loads and discharge were measured for each sub-plot. The results show that raindrop impact strongly enhances runoff generation, soil detachment and entrainment and E. coli export. When the impact of raindrops was reduced with a mosquito net, total runoff was reduced by more than 50%, soil erosion was on average reduced by 90% and E. coli export from the amended soil surface was on average 3 to 8 times lower. A coupled physics-based approach was performed using the Cast3M platform for modelling the time evolutions of runoff, solid particles detachment and transfer and bacteria transport that were measured for one of the nine plots. After estimation of the saturated hydraulic conductivity, soil erodibility and attachment rate of bacteria, model outputs were consistent with measured runoff coefficients, suspended sediment and E. coli loads. This work therefore underlines the need to maintain adequate vegetation at the soil surface to avoid the erosion and export of soil borne potential pathogens towards downstream aquatic systems.

3.
Sci Total Environ ; 616-617: 1330-1338, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29070444

RESUMO

In Montane Southeast Asia, deforestation and unsuitable combinations of crops and agricultural practices degrade soils at an unprecedented rate. Typically, smallholder farmers gain income from "available" land by replacing fallow or secondary forest by perennial crops. We aimed to understand how these practices increase or reduce soil erosion. Ten land uses were monitored in Northern Laos during the 2015 monsoon, using local farmers' fields. Experiments included plots of the conventional system (food crops and fallow), and land uses corresponding to new market opportunities (e.g. commercial tree plantations). Land uses were characterized by measuring plant cover and plant mean height per vegetation layer. Recorded meteorological variables included rainfall intensity, throughfall amount, throughfall kinetic energy (TKE), and raindrop size. Runoff coefficient, soil loss, and the percentage areas of soil surface types (free aggregates and gravel; crusts; macro-faunal, vegetal and pedestal features; plant litter) were derived from observations and measurements in 1-m2 micro-plots. Relationships between these variables were explored with multiple regression analyses. Our results indicate that TKE induces soil crusting and soil loss. By reducing rainfall infiltration, crusted area enhances runoff, which removes and transports soil particles detached by splash over non-crusted areas. TKE is lower under land uses reducing the velocity of raindrops and/or preventing an increase in their size. Optimal vegetation structures combine minimum height of the lowest layer (to reduce drop velocity at ground level) and maximum coverage (to intercept the largest amount of rainfall), as exemplified by broom grass (Thysanolaena latifolia). In contrast, high canopies with large leaves will increase TKE by enlarging raindrops, as exemplified by teak trees (Tectona grandis), unless a protective understorey exists under the trees. Policies that ban the burning of multi-layered vegetation structure under tree plantations should be enforced. Shade-tolerant shrubs and grasses with potential economic return could be promoted as understorey.

4.
Sci Rep ; 7(1): 3987, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28638092

RESUMO

Soil erosion supplies large quantities of sediments to rivers of Southeastern Asia. It reduces soil fertility of agro-ecosystems located on hillslopes, and it degrades, downstream, water resource quality and leads to the siltation of reservoirs. An increase in the surface area covered with commercial perennial monocultures such as teak plantations is currently observed at the expanse of traditional slash-and-burn cultivation systems in steep montane environments of these regions. The impacts of land-use change on the hydrological response and sediment yields have been investigated in a representative catchment of Laos monitored for 13 years. After the gradual conversion of rice-based shifting cultivation to teak plantation-based systems, overland flow contribution to stream flow increased from 16 to 31% and sediment yield raised from 98 to 609 Mg km-2. This result is explained by the higher kinetic energy of raindrops falling from the canopy, the virtual absence of understorey vegetation cover to dissipate drop energy and the formation of an impermeable surface crust accelerating the formation and concentration of overland flow. The 25-to-50% lower 137Cs activities measured in soils collected under mature teak plantations compared to soils under other land uses illustrate the severity of soil erosion processes occurring in teak plantations.

5.
Sci Rep ; 6: 32974, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27604854

RESUMO

Lack of access to clean water and adequate sanitation continues to be a major brake on development. Here we present the results of a 12-month investigation into the dynamics of Escherichia coli, a commonly used indicator of faecal contamination in water supplies, in three small, rural catchments in Laos, Thailand and Vietnam. We show that land use and hydrology are major controlling factors of E. coli concentrations in streamwater and that the relative importance of these two factors varies between the dry and wet seasons. In all three catchments, the highest concentrations were observed during the wet season when storm events and overland flow were highest. However, smaller peaks of E. coli concentration were also observed during the dry season. These latter correspond to periods of intense farming activities and small, episodic rain events. Furthermore, vegetation type, through land use and soil surface crusting, combined with mammalian presence play an important role in determining E. coli loads in the streams. Finally, sampling during stormflow revealed the importance of having appropriate sampling protocols if information on maximum contamination levels is required as grab sampling at a fixed time step may miss important peaks in E. coli numbers.


Assuntos
Escherichia coli/isolamento & purificação , Rios/microbiologia , Agricultura , Animais , Carga Bacteriana , Países em Desenvolvimento , Monitoramento Ambiental , Fezes/microbiologia , Humanos , Umidade , Hidrologia , Laos , Chuva , Estações do Ano , Tailândia , Clima Tropical , Vietnã , Microbiologia da Água , Abastecimento de Água
6.
Biochemistry ; 48(29): 6998-7008, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19530648

RESUMO

3-Phosphoglycerate kinase (PGK) is a promising candidate for the activation of nucleotide analogues used in antiviral and anticancer therapies. PGK is a key enzyme in glycolysis; it catalyzes the reversible reaction 1,3-bisphosphoglycerate + ADP <--> 3-phosphoglycerate + ATP. Here we explored the catalytic role in human PGK of the highly conserved Lys 215 that has been proposed to be essential for PGK function by a transient and equilibrium kinetic study with the active site mutant K215A. By the stopped-flow method we show that the kinetics of substrate binding and the associated protein isomerization steps are fast and identical for the wild-type PGK and mutant K215A. By the use of a chemical sampling method (rapid quench flow) under multiple and single turnover conditions and in both directions of the reaction, we show that the rate-limiting step with wild-type PGK follows product formation (presumably product release), whereas with the mutant it is the phospho-transfer step itself that is rate-limiting. Mutant K215A has a low inherent phosphotransferase activity, and to explain this, we carried out a molecular modeling study. This suggests that with the mutant the conserved Arg 65 replaces the missing Lys 215 by helping to position the transferable phospho group during the reaction. Molecular dynamics simulations suggest that in the mutant the closed conformation of the enzyme is stabilized by a salt bridge between Asp 218 and Arg 170 rather than Arg 65 in the wild-type PGK.


Assuntos
Lisina/metabolismo , Fosfoglicerato Quinase/metabolismo , Domínio Catalítico , Humanos , Cinética , Modelos Moleculares , Fosfoglicerato Quinase/química
7.
J Environ Qual ; 37(3): 889-97, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18453411

RESUMO

In northern Laos, intensification of cultivation on sloping land leads to accelerated erosion processes. Management of riparian land may counteract the negative impacts of higher sediment delivery rates on water quality. This study assessed water and sediment concentration trapping efficiencies of riparian vegetation in northern Laos and the effect of cultivation of riparian land on water quality. Runoff flowing in and out of selected riparian sites was monitored by means of open troughs. In 2005, two native grass, two bamboo, and two banana sites were monitored. In 2006, adjacent to steep banana, bamboo, and native grass sites, three upland rice sites were established and monitored. Water trapping efficiency (WTE) and sediment concentration trapping efficiency (SCTE) were calculated on an event basis; means and 95% confidence intervals (CIs) were estimated with a bootstrapping approach. Confidence intervals were large and overlapping among sites. Seepage conditions severely limited trapping efficiency. Native grass resulted in the highest WTE (95% CI, -0.10 to 0.23), which was not significantly different from zero. Banana resulted in the highest SCTE (95% CI, 0.06-0.40). Bamboo had negative WTE and SCTE. Median outflow runoff from rice sites was nine times the inflow. Median outflow sediment concentration from rice sites was two to five times that of their adjacent sites and two to five times the inflow sediment concentration. Although low-tillage banana plantation may reduce sediment concentration of runoff, cultivation of annual crops in riparian land leads to delivery of turbid runoff into the stream, thus severely affecting stream water quality.


Assuntos
Agricultura , Plantas , Laos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA