Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 4: 88, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326945

RESUMO

D-amino acid oxidase catalyzes the oxidative deamination of D-amino acids. In the brain, the NMDA receptor coagonist D-serine has been proposed as its physiological substrate. In order to shed light on the mechanisms regulating D-serine concentration at the cellular level, we biochemically characterized human DAAO (hDAAO) in greater depth. In addition to clarify the physical-chemical properties of the enzyme, we demonstrated that divalent ions and nucleotides do not affect flavoenzyme function. Moreover, the definition of hDAAO substrate specificity demonstrated that D-cysteine is the best substrate, which made it possible to propose it as a putative physiological substrate in selected tissues. Indeed, the flavoenzyme shows a preference for hydrophobic amino acids, some of which are molecules relevant in neurotransmission, i.e., D-kynurenine, D-DOPA, and D-tryptophan. hDAAO shows a very low affinity for the flavin cofactor. The apoprotein form exists in solution in equilibrium between two alternative conformations: the one at higher affinity for FAD is favored in the presence of an active site ligand. This may represent a mechanism to finely modulate hDAAO activity by substrate/inhibitor presence. Taken together, the peculiar properties of hDAAO seem to have evolved in order to use this flavoenzyme in different tissues to meet different physiological needs related to D-amino acids.

2.
Biochim Biophys Acta ; 1854(9): 1150-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25701391

RESUMO

In the brain, d-amino acid oxidase plays a key role in modulating the N-methyl-d-aspartate receptor (NMDAR) activation state, catalyzing the stereospecific degradation of the coagonist d-serine. A relationship between d-serine signaling deregulation, NMDAR dysfunction, and CNS diseases is presumed. Notably, the R199W substitution in human DAAO (hDAAO) was associated with familial amyotrophic lateral sclerosis (ALS), and further coding substitutions, i.e., R199Q and W209R, were also deposited in the single nucleotide polymorphism database. Here, we investigated the biochemical properties of these different hDAAO variants. The W209R hDAAO variant shows an improved d-serine degradation ability (higher activity and affinity for the cofactor FAD) and produces a greater decrease in cellular d/(d+l) serine ratio than the wild-type counterpart when expressed in U87 cells. The production of H2O2 as result of excessive d-serine degradation by this hDAAO variant may represent the factor affecting cell viability after stable transfection. The R199W/Q substitution in hDAAO altered the protein conformation and enzymatic activity was lost under conditions resembling the cellular ones: this resulted in an abnormal increase in cellular d-serine levels. Altogether, these results indicate that substitutions that affect hDAAO functionality directly impact on d-serine cellular levels (at least in the model cell system used). The pathological effect of the expression of the R199W hDAAO, as observed in familial ALS, originates from both protein instability and a decrease in kinetic efficiency: the increase in synaptic d-serine may be mainly responsible for the neurotoxic effect. This information is expected to drive future targeted treatments.


Assuntos
D-Aminoácido Oxidase/química , Polimorfismo de Nucleotídeo Único , Linhagem Celular Tumoral , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Escherichia coli/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Cinética , Ligantes , Conformação Proteica , Relação Estrutura-Atividade , Transfecção
3.
FEBS J ; 281(15): 3460-72, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24925096

RESUMO

Glycine is involved in several physiological functions, e.g. as a neurotransmitter in the central nervous system, and sarcosine has been identified as a differential metabolite greatly enhanced during prostate cancer progression and metastasis. Glycine oxidase from Bacillus subtilis (GO) was engineered with the final aim of producing specific analytical systems to detect these small achiral amino acids. Based on in silico analysis, site-saturation mutagenesis was independently performed at 11 positions: a total of 16 single-point GO variants were analyzed. Significantly improved kinetic parameters were observed on glycine for the A54R, H244K-N-Q-R, Y246W and M261R variants. The introduction of multiple mutations then identified the H244K/M261R variant showing a 5.4-fold increase in maximal activity on glycine. With sarcosine as substrate, a number of single-point variants showed increased maximal activity and/or affinity: the kinetic efficiency was increased 6-fold for the M49L variant. Two GO variants with a high substrate specificity ratio for glycine (versus sarcosine, i.e. H244K GO) or for sarcosine (versus glycine, i.e. M49L GO) combined with high substrate affinity were used to set up a simple fluorescence-based biosensor. This optical sensing assay represents a novel, inexpensive and fast tool to assay glycine or sarcosine concentrations in biological samples (detection limit ≤ 0.5 µm).


Assuntos
Aminoácido Oxirredutases/química , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Técnicas Biossensoriais , Aminoácido Oxirredutases/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Sequência Conservada , Glicina/análise , Glicina/química , Cinética , Limite de Detecção , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Sarcosina/análise , Sarcosina/química , Especificidade por Substrato , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA