Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31478849

RESUMO

The goal of psychometric scaling is the quantification of perceptual experiences, understanding the relationship between an external stimulus, the internal representation and the response. In this paper, we propose a probabilistic framework to fuse the outcome of different psychophysical experimental protocols, namely rating and pairwise comparisons experiments. Such a method can be used for merging existing datasets of subjective nature and for experiments in which both measurements are collected. We analyze and compare the outcomes of both types of experimental protocols in terms of time and accuracy in a set of simulations and experiments with benchmark and real-world image quality assessment datasets, showing the necessity of scaling and the advantages of each protocol and mixing. Although most of our examples focus on image quality assessment, our findings generalize to any other subjective quality-of-experience task.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31484117

RESUMO

A computationally fast tone mapping operator (TMO) that can quickly adapt to a wide spectrum of high dynamic range (HDR) content is quintessential for visualization on varied low dynamic range (LDR) output devices such as movie screens or standard displays. Existing TMOs can successfully tone-map only a limited number of HDR content and require an extensive parameter tuning to yield the best subjective-quality tone-mapped output. In this paper, we address this problem by proposing a fast, parameter-free and scene-adaptable deep tone mapping operator (DeepTMO) that yields a high-resolution and high-subjective quality tone mapped output. Based on conditional generative adversarial network (cGAN), DeepTMO not only learns to adapt to vast scenic-content (e.g., outdoor, indoor, human, structures, etc.) but also tackles the HDR related scene-specific challenges such as contrast and brightness, while preserving the fine-grained details. We explore 4 possible combinations of Generator-Discriminator architectural designs to specifically address some prominent issues in HDR related deep-learning frameworks like blurring, tiling patterns and saturation artifacts. By exploring different influences of scales, loss-functions and normalization layers under a cGAN setting, we conclude with adopting a multi-scale model for our task. To further leverage on the large-scale availability of unlabeled HDR data, we train our network by generating targets using an objective HDR quality metric, namely Tone Mapping Image Quality Index (TMQI). We demonstrate results both quantitatively and qualitatively, and showcase that our DeepTMO generates high-resolution, high-quality output images over a large spectrum of real-world scenes. Finally, we evaluate the perceived quality of our results by conducting a pair-wise subjective study which confirms the versatility of our method.

3.
IEEE Trans Image Process ; 27(3): 1512-1525, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29990064

RESUMO

High dynamic range (HDR) image visual quality assessment in the absence of a reference image is challenging. This research topic has not been adequately studied largely due to the high cost of HDR display devices. Nevertheless, HDR imaging technology has attracted increasing attention, because it provides more realistic content, consistent to what the human visual system perceives. We propose a new no-reference image quality assessment (NR-IQA) model for HDR data based on convolutional neural networks. The proposed model is able to detect visual artifacts, taking into consideration perceptual masking effects, in a distorted HDR image without any reference. The error and perceptual masking values are measured separately, yet sequentially, and then processed by a mixing function to predict the perceived quality of the distorted image. Instead of using simple stimuli and psychovisual experiments, perceptual masking effects are computed from a set of annotated HDR images during our training process. Experimental results demonstrate that our proposed NR-IQA model can predict HDR image quality as accurately as state-of-the-art full-reference IQA methods.

4.
IEEE Trans Image Process ; 18(11): 2491-504, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19635704

RESUMO

In the last decade, the increased possibility to produce, edit, and disseminate multimedia contents has not been adequately balanced by similar advances in protecting these contents from unauthorized diffusion of forged copies. When the goal is to detect whether or not a digital content has been tampered with in order to alter its semantics, the use of multimedia hashes turns out to be an effective solution to offer proof of legitimacy and to possibly identify the introduced tampering. We propose an image hashing algorithm based on compressive sensing principles, which solves both the authentication and the tampering identification problems. The original content producer generates a hash using a small bit budget by quantizing a limited number of random projections of the authentic image. The content user receives the (possibly altered) image and uses the hash to estimate the mean square error distortion between the original and the received image. In addition, if the introduced tampering is sparse in some orthonormal basis or redundant dictionary, an approximation is given in the pixel domain. We emphasize that the hash is universal, e.g., the same hash signature can be used to detect and identify different types of tampering. At the cost of additional complexity at the decoder, the proposed algorithm is robust to moderate content-preserving transformations including cropping, scaling, and rotation. In addition, in order to keep the size of the hash small, hash encoding/decoding takes advantage of distributed source codes.

5.
IEEE Trans Image Process ; 17(7): 1129-43, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18586621

RESUMO

Consider the problem of transmitting multiple video streams to fulfill a constant bandwidth constraint. The available bit budget needs to be distributed across the sequences in order to meet some optimality criteria. For example, one might want to minimize the average distortion or, alternatively, minimize the distortion variance, in order to keep almost constant quality among the encoded sequences. By working in the rho-domain, we propose a low-delay rate allocation scheme that, at each time instant, provides a closed form solution for either the aforementioned problems. We show that minimizing the distortion variance instead of the average distortion leads, for each of the multiplexed sequences, to a coding penalty less than 0.5 dB, in terms of average PSNR. In addition, our analysis provides an explicit relationship between model parameters and this loss. In order to smooth the distortion also along time, we accommodate a shared encoder buffer to compensate for rate fluctuations. Although the proposed scheme is general, and it can be adopted for any video and image coding standard, we provide experimental evidence by transcoding bitstreams encoded using the state-of-the-art H.264/AVC standard. The results of our simulations reveal that is it possible to achieve distortion smoothing both in time and across the sequences, without sacrificing coding efficiency.


Assuntos
Algoritmos , Compressão de Dados/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Gravação em Vídeo/métodos , Controle de Qualidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA