Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Hemasphere ; 8(2): e48, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38435424

RESUMO

CD19-directed immunotherapy has become a cornerstone in the therapy of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). CD19-directed cellular and antibody-based therapeutics have entered therapy of primary and relapsed disease and contributed to improved outcomes in relapsed disease and lower therapy toxicity. However, efficacy remains limited in many cases due to a lack of therapy response, short remission phases, or antigen escape. Here, BCP-ALL cell lines, patient-derived xenograft (PDX) samples, human macrophages, and an in vivo transplantation model in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were used to examine the therapeutic potency of a CD19 antibody Fc-engineered for improved effector cell recruitment (CD19-DE) and antibody-dependent cellular phagocytosis (ADCP), in combination with a novel modified CD47 antibody (Hu5F9-IgG2σ). For the in vivo model, only samples refractory to CD19-DE monotherapy were chosen. Hu5F9-IgG2σ enhanced ADCP by CD19-DE in various BCP-ALL cell line models with varying CD19 surface expression and cytogenetic backgrounds, two of which contained the KMT2A-AFF1 fusion. Also, the antibody combination was efficient in inducing ADCP by human macrophages in pediatric PDX samples with and adult samples with and without KMT2A-rearrangement in vitro. In a randomized phase 2-like PDX trial using seven KMT2A-rearranged BCP-ALL samples in NSG mice, the CD19/CD47 antibody combination proved highly efficient. Our findings support that the efficacy of Fc-engineered CD19 antibodies may be substantially enhanced by a combination with CD47 blockade. This suggests that the combination may be a promising therapy option for BCP-ALL, especially in relapsed patients and/or patients refractory to CD19-directed therapy.

2.
Nat Commun ; 15(1): 2007, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453922

RESUMO

Monoclonal IgG antibodies constitute the fastest growing class of therapeutics. Thus, there is an intense interest to design more potent antibody formats, where long plasma half-life is a commercially competitive differentiator affecting dosing, frequency of administration and thereby potentially patient compliance. Here, we report on an Fc-engineered variant with three amino acid substitutions Q311R/M428E/N434W (REW), that enhances plasma half-life and mucosal distribution, as well as allows for needle-free delivery across respiratory epithelial barriers in human FcRn transgenic mice. In addition, the Fc-engineered variant improves on-target complement-mediated killing of cancer cells as well as both gram-positive and gram-negative bacteria. Hence, this versatile Fc technology should be broadly applicable in antibody design aiming for long-acting prophylactic or therapeutic interventions.


Assuntos
Neoplasias , Receptores Fc , Camundongos , Animais , Humanos , Imunoglobulina G , Meia-Vida , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Camundongos Transgênicos , Anticorpos Monoclonais , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/terapia , Neoplasias/tratamento farmacológico
3.
Cancer Res ; 84(7): 1029-1047, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38270915

RESUMO

The clinical benefits of tumor-targeting antibodies (tAb) are modest in solid human tumors. The efficacy of many tAbs is dependent on Fc receptor (FcR)-expressing leukocytes that bind Fc fragments of tAb. Tumor-associated macrophages (TAM) and neutrophils (TAN) represent the majority of FcR+ effectors in solid tumors. A better understanding of the mechanisms by which TAMs and TANs regulate tAb response could help improve the efficacy of cancer treatments. Here, we found that myeloid effectors interacting with tAb-opsonized lung cancer cells used antibody-dependent trogocytosis (ADT) but not antibody-dependent phagocytosis. During this process, myeloid cells "nibbled off" tumor cell fragments containing tAb/targeted antigen (tAg) complexes. ADT was only tumoricidal when the tumor cells expressed high levels of tAg and the effectors were present at high effector-to-tumor ratios. If either of these conditions were not met, which is typical for solid tumors, ADT was sublethal. Sublethal ADT, mainly mediated by CD32hiCD64hi TAM, led to two outcomes: (i) removal of surface tAg/tAb complexes from the tumor that facilitated tumor cell escape from the tumoricidal effects of tAb; and (ii) acquisition of bystander tAgs by TAM with subsequent cross-presentation and stimulation of tumor-specific T-cell responses. CD89hiCD32loCD64lo peripheral blood neutrophils (PBN) and TAN stimulated tumor cell growth in the presence of the IgG1 anti-EGFR Ab cetuximab; however, IgA anti-EGFR Abs triggered the tumoricidal activity of PBN and negated the stimulatory effect of TAN. Overall, this study provides insights into the mechanisms by which myeloid effectors mediate tumor cell killing or resistance during tAb therapy. SIGNIFICANCE: The elucidation of the conditions and mechanisms by which human FcR+ myeloid effectors mediate cancer cell resistance and killing during antibody treatment could help develop improved strategies for treating solid tumors.


Assuntos
Neoplasias , Neutrófilos , Humanos , Neutrófilos/metabolismo , Macrófagos Associados a Tumor/metabolismo , Trogocitose , Citotoxicidade Celular Dependente de Anticorpos , Fagocitose , Neoplasias/patologia , Receptores Fc , Antígenos de Neoplasias
4.
Bone Marrow Transplant ; 59(2): 247-254, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38040842

RESUMO

Conditioning protocols for patients undergoing allogeneic hematopoietic cell transplantation (allo-HCT) are being developed continuously to improve their anti-leukemic efficacy and reduce their toxicity. In this study, we compared the conditioning protocol of fludarabine with melphalan 140 mg/m2 (FluMel) with conditioning protocols based on this same backbone but with an additional alkylating agent i.e., either fludarabine/BCNU (also known as carmustine)/melphalan (FBM), or fludarabine/thiotepa/melphalan (FTM) 110 mg/m2. We included 1272 adult patients (FluMel, n = 1002; FBM/FTM, n = 270) with acute myeloid leukemia (AML) with intermediate/poor cytogenetic risk in first complete remission (CR) from the registry of the EBMT Acute Leukemia Working Party. Despite patients in the FBM/FTM group were older (64.1 years vs. 59.8 years, p < 0.001) and had a worse Karnofsky performance score (KPS < 90, 33% vs. 24%, p = 0.003), they showed a better overall survival (OS) (2 y OS: 68.3% vs. 58.1%, p = 0.02) and less non-relapse mortality (NRM) (2 y NRM: 15.8% vs. 22.2%, p = 0.009) compared to patients treated with FluMel. No significant differences were observed in relapse incidence (RI) (2 y RI: 24.9% vs. 23.7%, p = 0.62). In conclusion, the addition of a second alkylating agent (BCNU/carmustine or thiotepa) to FluMel as FBM/FTM conditioning, improves OS in AML patients in first CR with intermediate/poor risk cytogenetics after allo-HCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Vidarabina/análogos & derivados , Humanos , Adulto , Melfalan/farmacologia , Melfalan/uso terapêutico , Carmustina , Tiotepa/farmacologia , Tiotepa/uso terapêutico , Bussulfano , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Condicionamento Pré-Transplante/métodos , Transplante Homólogo/efeitos adversos , Recidiva , Resposta Patológica Completa , Transplante de Células-Tronco Hematopoéticas/métodos , Doença Enxerto-Hospedeiro/etiologia , Alquilantes , Estudos Retrospectivos
5.
Cancers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37444515

RESUMO

Immunotherapy with targeted therapeutic antibodies is often ineffective in long-term responses in cancer patients due to resistance mechanisms such as overexpression of checkpoint molecules. Similar to T lymphocytes, myeloid immune cells express inhibitory checkpoint receptors that interact with ligands overexpressed on cancer cells, contributing to treatment resistance. While CD47/SIRPα-axis inhibitors in combination with IgA therapy have shown promise, complete tumor eradication remains a challenge, indicating the presence of other checkpoints. We investigated hypersialylation on the tumor cell surface as a potential myeloid checkpoint and found that hypersialylated cancer cells inhibit neutrophil-mediated tumor killing through interactions with sialic acid-binding immunoglobulin-like lectins (Siglecs). To enhance antibody-dependent cellular cytotoxicity (ADCC) using IgA as therapeutic, we explored strategies to disrupt the interaction between tumor cell sialoglycans and Siglecs expressed on neutrophils. We identified Siglec-9 as the primary inhibitory receptor, with Siglec-7 also playing a role to a lesser extent. Blocking Siglec-9 enhanced IgA-mediated ADCC by neutrophils. Concurrent expression of multiple checkpoint ligands necessitated a multi-checkpoint-blocking approach. In certain cancer cell lines, combining CD47 blockade with desialylation improved IgA-mediated ADCC, effectively overcoming resistance that remained when blocking only one checkpoint interaction. Our findings suggest that a combination of CD47 blockade and desialylation may be necessary to optimize cancer immunotherapy, considering the upregulation of checkpoint molecules by tumor cells to evade immune surveillance.

6.
J Immunother Cancer ; 11(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37479484

RESUMO

BACKGROUND: Immunotherapy targeting GD2 is very effective against high-risk neuroblastoma, though administration of anti-GD2 antibodies induces severe and dose-limiting neuropathic pain by binding GD2-expressing sensory neurons. Previously, the IgG1 ch14.18 (dinutuximab) antibody was reformatted into the IgA1 isotype, which abolishes neuropathic pain and induces efficient neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) via activation of the Fc alpha receptor (FcαRI/CD89). METHODS: To generate an antibody suitable for clinical application, we engineered an IgA molecule (named IgA3.0 ch14.18) with increased stability, mutated glycosylation sites and substituted free (reactive) cysteines. The following mutations were introduced: N45.2G and P124R (CH1 domain), C92S, N120T, I121L and T122S (CH2 domain) and a deletion of the tail piece P131-Y148 (CH3 domain). IgA3.0 ch14.18 was evaluated in binding assays and in ADCC and antibody-dependent cellular phagocytosis (ADCP) assays with human, neuroblastoma patient and non-human primate effector cells. We performed mass spectrometry analysis of N-glycans and evaluated the impact of altered glycosylation in IgA3.0 ch14.18 on antibody half-life by performing pharmacokinetic (PK) studies in mice injected intravenously with 5 mg/kg antibody solution. A dose escalation study was performed to determine in vivo efficacy of IgA3.0 ch14.18 in an intraperitoneal mouse model using 9464D-GD2 neuroblastoma cells as well as in a subcutaneous human xenograft model using IMR32 neuroblastoma cells. Binding assays and PK studies were compared with one-way analysis of variance (ANOVA), ADCC and ADCP assays and in vivo tumor outgrowth with two-way ANOVA followed by Tukey's post-hoc test. RESULTS: ADCC and ADCP assays showed that particularly neutrophils and macrophages from healthy donors, non-human primates and patients with neuroblastoma are able to kill neuroblastoma tumor cells efficiently with IgA3.0 ch14.18. IgA3.0 ch14.18 contains a more favorable glycosylation pattern, corresponding to an increased antibody half-life in mice compared with IgA1 and IgA2. Furthermore, IgA3.0 ch14.18 penetrates neuroblastoma tumors in vivo and halts tumor outgrowth in both 9464D-GD2 and IMR32 long-term tumor models. CONCLUSIONS: IgA3.0 ch14.18 is a promising new therapy for neuroblastoma, showing (1) increased half-life compared to natural IgA antibodies, (2) increased protein stability enabling effortless production and purification, (3) potent CD89-mediated tumor killing in vitro by healthy subjects and patients with neuroblastoma and (4) antitumor efficacy in long-term mouse neuroblastoma models.


Assuntos
Imunoglobulina A , Neuroblastoma , Humanos , Animais , Camundongos , Neuroblastoma/tratamento farmacológico , Imunoterapia , Imunoglobulina G , Citotoxicidade Celular Dependente de Anticorpos , Modelos Animais de Doenças
7.
Cancer ; 129(17): 2645-2654, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37269074

RESUMO

BACKGROUND: Allogeneic hematopoietic cell transplantation (allo-HCT) is the only cure for acute myeloid leukemia (AML) in second complete remission (CR2). Patients lacking a matched sibling donor (MSD) receive transplants from matched unrelated donors (MUDs), mismatched unrelated donors (MMUDs), haploidentical (haplo) donors, or cord blood. METHODS: This is a retrospective, registry-based European Society for Blood and Marrow Transplantation study that investigates changes in patient- and transplant-related characteristics and posttransplant outcomes over time. RESULTS: We identified 3955 adult patients (46.7% female; median age, 52 years [range, 18-78 years]) with AML in CR2 first transplanted between 2005 and 2019 from a MUD 10/10 (61.4%), MMUD 9/10 (21.9%), or haplo donor (16.7%) and followed for 3.7 years. A total of 725 patients were transplanted between 2005 and 2009, 1600 between 2010 and 2014, and 1630 between 2015 and 2019. Over the three time periods, there was a significant increase in patient age (from 48.7 to 53.5 years; p < .001), use of a haplo donor (from 4.6% to 26.4%; p < .001), and use of posttransplant cyclophosphamide (from 0.4% to 29%; p < .001). There was a significant decrease in total body irradiation and in vivo T-cell depletion. In multivariate analysis, transplants performed more recently had better outcomes. Leukemia-free survival (hazard ratio [HR], 0.79; p = .002) and overall survival (HR, 0.73; p < .001) increased over time. Similarly, nonrelapse mortality (HR, 0.64; p < .001) decreased over time. We also observed better graft-vs-host disease (GVHD) rates (acute GVHD II-IV: HR, 0.78; p = .03; GVHD-free, relapse-free survival: HR, 0.69; p < .001). CONCLUSIONS: Even in the absence of an MSD, outcomes of allo-HCT in CR2 for AML have significantly improved over time, with most favorable outcomes achieved with a MUD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Adulto , Humanos , Feminino , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Masculino , Medula Óssea , Estudos Retrospectivos , Leucemia Mieloide Aguda/terapia , Doença Aguda , Ciclofosfamida , Doadores não Relacionados , Doença Enxerto-Hospedeiro/epidemiologia , Doença Enxerto-Hospedeiro/etiologia , Condicionamento Pré-Transplante
8.
J Immunol ; 211(3): 403-413, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37350633

RESUMO

Activation of the complement system represents an important effector mechanism of endogenous and therapeutic Abs. However, efficient complement activation is restricted to a subset of Abs due to the requirement of multivalent interactions between the Ab Fc regions and the C1 complex. In the present study, we demonstrate that Fc-independent recruitment of C1 by modular bispecific single-domain Abs that simultaneously bind C1q and a surface Ag can potently activate the complement system. Using Ags from hematological and solid tumors, we show that these bispecific Abs are cytotoxic to human tumor cell lines that express the Ag and that the modular design allows a functional exchange of the targeting moiety. Direct comparison with clinically approved Abs demonstrates a superior ability of the bispecific Abs to induce complement-dependent cytotoxicity. The efficacy of the bispecific Abs to activate complement strongly depends on the epitope of the C1q binding Ab, demonstrating that the spatial orientation of the C1 complex upon Ag engagement is a critical factor for efficient complement activation. Collectively, our data provide insight into the mechanism of complement activation and provide a new platform for the development of immunotherapies.


Assuntos
Antineoplásicos , Complemento C1q , Humanos , Complemento C1q/metabolismo , Proteínas do Sistema Complemento , Ativação do Complemento , Linhagem Celular Tumoral
9.
Front Immunol ; 14: 1178817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346044

RESUMO

Upregulation of surface expressed sialoglycans on tumor cells is one of the mechanisms which promote tumor growth and progression. Specifically, the interactions of sialic acids with sialic acid-binding immunoglobulin-like lectins (Siglecs) on lymphoid or myeloid cells transmit inhibitory signals and lead to suppression of anti-tumor responses. Here, we show that neutrophils express among others Siglec-9, and that EGFR and HER2 positive breast tumor cells express ligands for Siglec-9. Treatment of tumor cells with neuraminidases or a sialyl transferase inhibitor significantly reduced binding of a soluble recombinant Siglec-9-Fc fusion protein, while EGFR and HER2 expression remained unchanged. Importantly, the cytotoxic activity of neutrophils driven by therapeutic EGFR or HER2 antibodies in vitro was increased by blocking the sialic acid/Siglec interaction, either by reducing tumor cell sialylation or by a Siglec-9 blocking antibody containing an effector silenced Fc domain. In vivo a short-term xenograft mouse model confirmed the improved therapeutic efficacy of EGFR antibodies against sialic acid depleted, by a sialyltransferase inhibitor, tumor cells compared to untreated cells. Our studies demonstrate that sialic acid/Siglec interactions between tumor cells and myeloid cells can impair antibody dependent tumor cell killing, and that Siglec-9 on polymorphonuclear cells (PMN) is critically involved. Considering that PMN are often a highly abundant cell population in the tumor microenvironment, Siglec-9 constitutes a promising target for myeloid checkpoint blockade to improve antibody-based tumor immunotherapy.


Assuntos
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Camundongos , Animais , Ácido N-Acetilneuramínico/metabolismo , Neutrófilos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Anticorpos , Ácidos Siálicos/metabolismo , Receptores ErbB , Microambiente Tumoral
10.
Transplant Cell Ther ; 29(7): 457.e1-457.e10, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150297

RESUMO

Previous studies have illustrated associations between the presence of activating killer cell immunoglobulin-like receptor (KIR) genes and lower susceptibility to hematologic malignancies in humans. In addition, favorable hematopoietic stem cell transplantation (HSCT) outcomes have been reported in patients who received transplants from donors with KIR genotypes dominant for activating KIR receptors. However, the association of activating KIR genes on an allelic level with disease and their impact on HSCT outcome has been little investigated to date. To this end, we genotyped a large transplantation cohort for KIR 2 Ig domains and short cytoplasmic tail 4 (KIR2DS4) polymorphisms and investigated their association with disease. We next investigated the impact of KIR-AA genotype donor KIR2DS4 polymorphisms (AA/KIR2DS4 versus AA/ KIR 1 Ig domain [KIR1D]) on clinical outcomes of HSCT in myeloid versus lymphoid patient subgroups. Among 2810 transplantation donor-recipient pairs, 68.8% (n = 1934) were 10/10 HLA-matched and 31.2% (n = 876) were 9/10 HLA-matched. The distribution of KIR1D was equal in patients and donors (P = .205). Multivariate analysis in 10/10 HLA-matched patients with lymphoid disease showed improved HSCT outcomes when they received grafts from AA/KIR1D donors (overall survival: hazard ratio [HR], .62, P = .002; disease free survival: HR, .70, P = .011; graft-versus-host disease-free and relapse-free survival: HR, .67, P = .002; nonrelapse mortality: HR, .55, P < .001). This effect was not seen in either 9/10 HLA-matched patients with lymphoid disease or patients with myeloid disease. Our study indicates that the presence of KIR1D alleles is not associated with disease in patients, and, interestingly, using grafts from AA/KIR1D donors translated into beneficial survival outcomes in 10/10 HLA-matched patients with lymphoid disease.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Recidiva Local de Neoplasia , Humanos , Recidiva Local de Neoplasia/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Receptores KIR/genética , Genótipo , Doadores de Tecidos
12.
Front Immunol ; 13: 929339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389667

RESUMO

Antibody-dependent cellular phagocytosis (ADCP) by macrophages, an important effector function of tumor targeting antibodies, is hampered by 'Don´t Eat Me!' signals such as CD47 expressed by cancer cells. Yet, human leukocyte antigen (HLA) class I expression may also impair ADCP by engaging leukocyte immunoglobulin-like receptor subfamily B (LILRB) member 1 (LILRB1) or LILRB2. Analysis of different lymphoma cell lines revealed that the ratio of CD20 to HLA class I cell surface molecules determined the sensitivity to ADCP by the combination of rituximab and an Fc-silent variant of the CD47 antibody magrolimab (CD47-IgGσ). To boost ADCP, Fc-silent antibodies against LILRB1 and LILRB2 were generated (LILRB1-IgGσ and LILRB2-IgGσ, respectively). While LILRB2-IgGσ was not effective, LILRB1-IgGσ significantly enhanced ADCP of lymphoma cell lines when combined with both rituximab and CD47-IgGσ. LILRB1-IgGσ promoted serial engulfment of lymphoma cells and potentiated ADCP by non-polarized M0 as well as polarized M1 and M2 macrophages, but required CD47 co-blockade and the presence of the CD20 antibody. Importantly, complementing rituximab and CD47-IgGσ, LILRB1-IgGσ increased ADCP of chronic lymphocytic leukemia (CLL) or lymphoma cells isolated from patients. Thus, dual checkpoint blockade of CD47 and LILRB1 may be promising to improve antibody therapy of CLL and lymphomas through enhancing ADCP by macrophages.


Assuntos
Antígeno CD47 , Leucemia Linfocítica Crônica de Células B , Humanos , Antígeno CD47/metabolismo , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , Rituximab/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Linhagem Celular Tumoral , Fagocitose , Macrófagos , Anticorpos/metabolismo , Antígenos CD/metabolismo
14.
Front Immunol ; 13: 949140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052078

RESUMO

Antibody-based immunotherapy is increasingly employed to treat acute lymphoblastic leukemia (ALL) patients. Many T-ALL cells express CD38 on their surface, which can be targeted by the CD38 antibody daratumumab (DARA), approved for the treatment of multiple myeloma. Tumor cell killing by myeloid cells is relevant for the efficacy of many therapeutic antibodies and can be more efficacious with human IgA than with IgG antibodies. This is demonstrated here by investigating antibody-dependent cellular phagocytosis (ADCP) by macrophages and antibody-dependent cell-mediated cytotoxicity (ADCC) by polymorphonuclear (PMN) cells using DARA (human IgG1) and an IgA2 isotype switch variant (DARA-IgA2) against T-ALL cell lines and primary patient-derived tumor cells. ADCP and ADCC are negatively regulated by interactions between CD47 on tumor cells and signal regulatory protein alpha (SIRPα) on effector cells. In order to investigate the impact of this myeloid checkpoint on T-ALL cell killing, CD47 and glutaminyl-peptide cyclotransferase like (QPCTL) knock-out T-ALL cells were employed. QPTCL is an enzymatic posttranslational modifier of CD47 activity, which can be targeted by small molecule inhibitors. Additionally, we used an IgG2σ variant of the CD47 blocking antibody magrolimab, which is in advanced clinical development. Moreover, treatment of T-ALL cells with all-trans retinoic acid (ATRA) increased CD38 expression leading to further enhanced ADCP and ADCC, particularly when DARA-IgA2 was applied. These studies demonstrate that myeloid checkpoint blockade in combination with IgA2 variants of CD38 antibodies deserves further evaluation for T-ALL immunotherapy.


Assuntos
Antígeno CD47 , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Humanos , Imunoglobulina A
15.
Front Immunol ; 13: 957874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119088

RESUMO

Targeting CD19 represents a promising strategy for the therapy of B-cell malignancies. Although non-engineered CD19 antibodies are poorly effective in mediating complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP), these effector functions can be enhanced by Fc-engineering. Here, we engineered a CD19 antibody with the aim to improve effector cell-mediated killing and CDC activity by exchanging selected amino acid residues in the Fc domain. Based on the clinically approved Fc-optimized antibody tafasitamab, which triggers enhanced ADCC and ADCP due to two amino acid exchanges in the Fc domain (S239D/I332E), we additionally added the E345K amino acid exchange to favor antibody hexamerization on the target cell surface resulting in improved CDC. The dual engineered CD19-DEK antibody bound CD19 and Fcγ receptors with similar characteristics as the parental CD19-DE antibody. Both antibodies were similarly efficient in mediating ADCC and ADCP but only the dual optimized antibody was able to trigger complement deposition on target cells and effective CDC. Our data provide evidence that from a technical perspective selected Fc-enhancing mutations can be combined (S239D/I332E and E345K) allowing the enhancement of ADCC, ADCP and CDC with isolated effector populations. Interestingly, under more physiological conditions when the complement system and FcR-positive effector cells are available as effector source, strong complement deposition negatively impacts FcR engagement. Both effector functions were simultaneously active only at selected antibody concentrations. Dual Fc-optimized antibodies may represent a strategy to further improve CD19-directed cancer immunotherapy. In general, our results can help in guiding optimal antibody engineering strategies to optimize antibodies' effector functions.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Receptores de IgG , Aminoácidos , Antígenos CD19 , Proteínas do Sistema Complemento , Fragmentos Fc das Imunoglobulinas , Receptores de IgG/genética , Receptores de IgG/metabolismo
18.
HLA ; 100(4): 349-360, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35799419

RESUMO

INTRODUCTION: Graft-versus-host disease (GvHD) is a major complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is highly influenced by the degree of HLA matching between recipient and donor. The HLA-class Ib molecule HLA-G has been shown to promote tolerogenicity through its interaction with inhibitory receptors found on several immunocompetent cells. We hypothesized that in an allo-HSCT setting, HLA-G mismatches may negatively impact the HLA-G-mediated tolerogenicity either due to inefficient interaction with the inhibitory receptors of the transplanted immune cells or due to direct allorecognition of mismatched HLA-G on host cells by the immune cells of the donor. METHODS: In order to explore this hypothesis, we investigated the impact of HLA-G mismatching in 2.083 10/10 matched high resolution HLA-typed allo-HSCT transplants. RESULTS: We found that the risk of chronic GvHD was significantly higher in HLA-G-mismatched transplant cases as compared with the HLA-G-matched control group (HR: 1.46, 95%CI = 1.11-1.91, p = 0.006). Sub-analysis of the mismatch vector revealed that this effect was only detectable in the GvH (HR: 1.89, 95%CI 1.39-2.57, p < 0.001) but not the HvG direction (HR: 1.01, 95%CI = 0.63-1.63, p = 0.967). In addition, the negative impact of HLA-G mismatching on chronic GvHD was only significant in younger patients (<30y HR: 3.02, 95%CI = 1.25-7.28, p = 0.014; >29y HR: 1.28, 95%CI = 0.94-1.72, p = 0.113). DISCUSSION: Our results indicate that HLA-G mismatches may contribute to the onset of chronic GvHD, especially in younger patients and should therefore be avoided when possible.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Alelos , Antígenos HLA-G , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Estudos Retrospectivos
19.
Bone Marrow Transplant ; 57(10): 1539-1547, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35804057

RESUMO

A common genetic variant within the T cell receptor alpha (TCRA)-T cell receptor delta (TCRD) locus (rs2204985) has been recently found to associate with thymic function. Aim of this study was to investigate the potential impact of donor rs2204985 genotype on patient's outcome after unrelated hematopoietic stem cell transplantation (uHSCT). 2016 adult patients were retrospectively analyzed. rs2204985 genotyping was performed by next generation sequencing, p < 0.05 was considered significant and donor rs2204985 GG/AG genotypes were set as reference vs. the AA genotype. Multivariate analysis of the combined cohort regarding the impact of donor's rs2204985 genotype indicated different risk estimates in 10/10 and 9/10 HLA matched transplantations. A subanalysis on account of HLA incompatibility revealed that donor AA genotype in single HLA mismatched cases (n = 624) associated with significantly inferior overall- (HR: 1.48, p = 0.003) and disease-free survival (HR: 1.50, p = 0.001). This effect was driven by a combined higher risk of relapse incidence (HR: 1.40, p = 0.026) and non-relapse mortality (HR: 1.38, p = 0.042). This is the first study to explore the role of rs2204985 in a clinical uHSCT setting. Our data suggest that donor rs2204985 AA genotype in combination with single HLA mismatches may adversely impact post-HSCT outcome and should thus be avoided.


Assuntos
Doença Enxerto-Hospedeiro , Antígenos HLA/genética , Transplante de Células-Tronco Hematopoéticas , Adulto , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Recidiva Local de Neoplasia , Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T gama-delta , Estudos Retrospectivos , Trombopoese , Doadores de Tecidos , Doadores não Relacionados
20.
Blood Adv ; 6(16): 4847-4858, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35820018

RESUMO

Immunotherapy has evolved as a powerful tool for the treatment of B-cell malignancies, and patient outcomes have improved by combining therapeutic antibodies with conventional chemotherapy. Overexpression of antiapoptotic B-cell lymphoma 2 (Bcl-2) is associated with a poor prognosis, and increased levels have been described in patients with "double-hit" diffuse large B-cell lymphoma, a subgroup of Burkitt's lymphoma, and patients with pediatric acute lymphoblastic leukemia harboring a t(17;19) translocation. Here, we show that the addition of venetoclax (VEN), a specific Bcl-2 inhibitor, potently enhanced the efficacy of the therapeutic anti-CD20 antibody rituximab, anti-CD38 daratumumab, and anti-CD19-DE, a proprietary version of tafasitamab. This was because of an increase in antibody-dependent cellular phagocytosis by macrophages as shown in vitro and in vivo in cell lines and patient-derived xenograft models. Mechanistically, double-hit lymphoma cells subjected to VEN triggered phagocytosis in an apoptosis-independent manner. Our study identifies the combination of VEN and therapeutic antibodies as a promising novel strategy for the treatment of B-cell malignancies.


Assuntos
Citofagocitose , Linfoma Difuso de Grandes Células B , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Criança , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2 , Sulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA