Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancers (Basel) ; 16(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473210

RESUMO

Artificial intelligence (AI) is emerging as a discipline capable of providing significant added value in Medicine, in particular in radiomic, imaging analysis, big dataset analysis, and also for generating virtual cohort of patients. However, in coping with chronic myeloid leukemia (CML), considered an easily managed malignancy after the introduction of TKIs which strongly improved the life expectancy of patients, AI is still in its infancy. Noteworthy, the findings of initial trials are intriguing and encouraging, both in terms of performance and adaptability to different contexts in which AI can be applied. Indeed, the improvement of diagnosis and prognosis by leveraging biochemical, biomolecular, imaging, and clinical data can be crucial for the implementation of the personalized medicine paradigm or the streamlining of procedures and services. In this review, we present the state of the art of AI applications in the field of CML, describing the techniques and objectives, and with a general focus that goes beyond Machine Learning (ML), but instead embraces the wider AI field. The present scooping review spans on publications reported in Pubmed from 2003 to 2023, and resulting by searching "chronic myeloid leukemia" and "artificial intelligence". The time frame reflects the real literature production and was not restricted. We also take the opportunity for discussing the main pitfalls and key points to which AI must respond, especially considering the critical role of the 'human' factor, which remains key in this domain.

2.
BMC Med Inform Decis Mak ; 22(Suppl 6): 346, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732801

RESUMO

BACKGROUND: Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease whose spreading and progression mechanisms are still unclear. The ability to predict ALS prognosis would improve the patients' quality of life and support clinicians in planning treatments. In this paper, we investigate ALS evolution trajectories using Process Mining (PM) techniques enriched to both easily mine processes and automatically reveal how the pathways differentiate according to patients' characteristics. METHODS: We consider data collected in two distinct data sources, namely the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) dataset and a real-world clinical register (ALS-BS) including data of patients followed up in two tertiary clinical centers of Brescia (Italy). With a focus on the functional abilities progressively impaired as the disease progresses, we use two Process Discovery methods, namely the Directly-Follows Graph and the CareFlow Miner, to mine the population disease trajectories on the PRO-ACT dataset. We characterize the impairment trajectories in terms of patterns, timing, and probabilities, and investigate the effect of some patients' characteristics at onset on the followed paths. Finally, we perform a comparative study of the impairment trajectories mined in PRO-ACT versus ALS-BS. RESULTS: We delineate the progression pathways on PRO-ACT, identifying the predominant disabilities at different stages of the disease: for instance, 85% of patients enter the trials without disabilities, and 48% of them experience the impairment of Walking/Self-care abilities first. We then test how a spinal onset increases the risk of experiencing the loss of Walking/Self-care ability as first impairment (52% vs. 27% of patients develop it as the first impairment in the spinal vs. the bulbar cohorts, respectively), as well as how an older age at onset corresponds to a more rapid progression to death. When compared, the PRO-ACT and the ALS-BS patient populations present some similarities in terms of natural progression of the disease, as well as some differences in terms of observed trajectories plausibly due to the trial scheduling and recruitment criteria. CONCLUSIONS: We exploited PM to provide an overview of the evolution scenarios of an ALS trial population and to preliminary compare it to the progression observed in a clinical cohort. Future work will focus on further improving the understanding of the disease progression mechanisms, by including additional real-world subjects as well as by extending the set of events considered in the impairment trajectories.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/terapia , Progressão da Doença , Qualidade de Vida , Prognóstico
3.
Artigo em Inglês | MEDLINE | ID: mdl-32932877

RESUMO

In the age of Evidence-Based Medicine, Clinical Guidelines (CGs) are recognized to be an indispensable tool to support physicians in their daily clinical practice. Medical Informatics is expected to play a relevant role in facilitating diffusion and adoption of CGs. However, the past pioneering approaches, often fragmented in many disciplines, did not lead to solutions that are actually exploited in hospitals. Process Mining for Healthcare (PM4HC) is an emerging discipline gaining the interest of healthcare experts, and seems able to deal with many important issues in representing CGs. In this position paper, we briefly describe the story and the state-of-the-art of CGs, and the efforts and results of the past approaches of medical informatics. Then, we describe PM4HC, and we answer questions like how can PM4HC cope with this challenge? Which role does PM4HC play and which rules should be employed for the PM4HC scientific community?


Assuntos
Atenção à Saúde , Medicina Baseada em Evidências
4.
Artif Intell Med ; 96: 145-153, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30292538

RESUMO

Following the personalized medicine paradigm, there is a growing interest in medical agents capable of predicting the effect of therapies on patients, by exploiting the amount of data that is now available for each patient. In disciplines like oncology, where images and scans are available, the exploitation of medical images can provide an additional source of potentially useful information. The study and analysis of features extracted by medical images, exploited for predictive purposes, is termed radiomics. A number of tools are available for supporting some of the steps of the radiomics process, but there is a lack of approaches which are able to deal with all the steps of the process. In this paper, we introduce a medical agent-based decision support system capable of handling the whole radiomics process. The proposed system is tested on two independent data sets of patients treated for rectal cancer. Experimental results indicate that the system is able to generate highly performant centre-specific predictive model, and show the issues related to differences in data sets collected by different centres, and how such issues can affect the performance of the generated predictive models.


Assuntos
Tomada de Decisões Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Medicina de Precisão , Neoplasias Retais/diagnóstico por imagem , Humanos , Curva ROC , Neoplasias Retais/terapia
5.
Oncotarget ; 8(65): 108509-108521, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29312547

RESUMO

INTRODUCTION: The role of prophylactic inguinal irradiation (PII) in the treatment of anal cancer patients is controversial. We developped an innovative algorithm based on the Machine Learning (ML) allowing the tailoring of the prescription of PII. RESULTS: Once verified on the independent testing set, J48 showed the better performances, with specificity, sensitivity, and accuracy rates in predicting relapsing patients of 86.4%, 50.0% and 83.1% respectively (vs 36.5%, 90.4% and 80.25%, respectively, for LR). METHODS: We classified 194 anal cancer patients with Logistic Regression (LR) and other 3 ML techniques based on decision trees (J48, Random Tree and Random Forest), using a large set of clinical and therapeutic variables. We tested obtained ML algorithms on an independent testing set of 65 anal cancer patients. TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis) methodology was used for the development, the Quality Assurance and the description of the experimental procedures. CONCLUSION: In an internationally approved quality assurance framework, ML seems promising in predicting the outcome of patients that would benefit or not of the PII. Once confirmed in larger and/or multi-centric databases, ML could support the physician in tailoring the treatment and in deciding if deliver or not the PII.

6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 771-4, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26736376

RESUMO

Decision Support Systems (DSSs) are increasingly exploited in the area of prognostic evaluations. For predicting the effect of therapies on patients, the trend is now to use image features, i.e. information that can be automatically computed by considering images resulting by analysis. The DSSs application as predictive tools is particularly suitable for cancer treatment, given the peculiarities of the disease -which is highly localised and lead to significant social costs- and the large number of images that are available for each patient. At the state of the art, there exists tools that allow to handle image features for prognostic evaluations, but they are not designed for medical experts. They require either a strong engineering or computer science background since they do not integrate all the required functions, such as image retrieval and storage. In this paper we fill this gap by proposing Moddicom, a user-friendly complete library specifically designed to be exploited by physicians. A preliminary experimental analysis, performed by a medical expert that used the tool, demonstrates the efficiency and the effectiveness of Moddicom.


Assuntos
Prognóstico , Humanos , Armazenamento e Recuperação da Informação , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA