Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Toxins (Basel) ; 16(9)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39330834

RESUMO

EGFR-targeted therapies are efficacious, but toxicity is common and can be severe. Urokinase type plasminogen activator receptor (uPAR)-targeted drugs are only emerging, so neither their efficacy nor toxicity is fully established. Recombinant eBAT was created by combining cytokines EGF and uPA on the same single-chain molecule with truncated Pseudomonas toxin. Its purpose was to simultaneously target tumors and their vasculature in the tumor microenvironment. In prior studies on mice and dogs, the drug proved efficacious. Here, we report the safety of eBAT in normal wildtype, uPAR knockout, and immunoreplete and immunodeficient tumor-bearing mice, as well as in dogs with spontaneous sarcoma that more closely mirror human cancer onset. In immunocompetent mice, tumor-bearing mice, uPAR knockout mice, and mice receiving species-optimized eBAT, toxicities were mild and self-limiting. Likewise, in dogs with life-threatening sarcoma given dosages found to be biologically active, eBAT was well tolerated. In mice receiving higher doses, eBAT was associated with dose-dependent evidence of liver injury, including portal biliary hyperplasia, oval cell proliferation, lymphoplasmacytic inflammation, periportal hepatocellular microvesicular change, hemorrhage, necrosis, and apoptosis. The results support continuing the clinical development of eBAT as a therapeutic agent for individuals with sarcoma and other cancers.


Assuntos
Receptores ErbB , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Animais , Cães , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Feminino , Camundongos Knockout , Camundongos , Camundongos Endogâmicos C57BL , Sarcoma/tratamento farmacológico , Antineoplásicos/toxicidade , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Fator de Crescimento Epidérmico , Masculino , Ligantes
2.
Front Immunol ; 14: 1060905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911670

RESUMO

New treatments are required to enhance current therapies for lung cancer. Mesothelin is a surface protein overexpressed in non-small cell lung cancer (NSCLC) that shows promise as an immunotherapeutic target in phase I clinical trials. However, the immunosuppressive environment in NSCLC may limit efficacy of these therapies. We applied time-of-flight mass cytometry to examine the state of circulating mononuclear cells in fourteen patients undergoing treatment for unresectable lung cancer. Six patients had earlier stage NSCLC (I-IVA) and eight had highly advanced NSCLC (IVB). The advanced NSCLC patients relapsed with greater frequency than the earlier stage patients. Before treatment, patients with very advanced NSCLC had a greater proportion of CD14- myeloid cells than patients with earlier NSCLC. These patients also had fewer circulating natural killer (NK) cells bearing an Fc receptor, CD16, which is crucial to antibody-dependent cellular cytotoxicity. We designed a high affinity tri-specific killer engager (TriKE®) to enhance NK cytotoxicity against mesothelin+ targets in this environment. The TriKE consisted of CD16 and mesothelin binding elements linked together by IL-15. TriKE enhanced proliferation of lung cancer patient NK cells in vitro. Lung cancer lines are refractory to NK cell killing, but the TriKE enhanced cytotoxicity and cytokine production by patient NK cells when challenged with tumor. Importantly, TriKE triggered NK cell responses from patients at all stages of disease and treatment, suggesting TriKE can enhance current therapies. These pre-clinical studies suggest mesothelin-targeted TriKE has the potential to overcome the immunosuppressive environment of NSCLC to treat disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Mesotelina , Células Matadoras Naturais/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Imunossupressores/metabolismo
3.
Mol Cancer Ther ; 22(3): 371-380, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36548194

RESUMO

Cancer stem-like cells (CSCs) are often the root cause of refractive relapse due to their inherent resistance to most therapies and ability to rapidly self-propagate. Recently, the antigen CD133 has been identified as a CSC marker on several cancer types and αCD133 therapies have shown selective targeting against CSCs with minimal off-target toxicity. Theoretically, by selectively eliminating CSCs, the sensitivity to bulk tumor-targeting therapies should be enhanced. Previously, our laboratory has developed bispecific chemically self-assembled nanorings (CSANs) that successfully induced T-cell eradication of EpCAM-positive (EpCAM+) tumors. We reasoned that targeting both CSCs [CD133-positive (CD133+)] and the bulk tumor (EpCAM+) simultaneously using our CSAN platform should produce a synergistic effect. We evaluated αCD133/αCD3 CSANs as both a single agent and in combination with αEpCAM/αCD3 CSANs to treat triple-negative breast cancer (TNBC) cells, which express a subpopulation of CD133+ cancer stem cells and EpCAM+ bulk tumor cells. Furthermore, an orthotopic breast cancer model validated the ability of αCD133 and αEpCAM targeting to combine synergistically in the elimination of TNBC MDA-MB-231 cells. Complete tumor eradication only occurred when EpCAM and CD133 were targeted simultaneously and lead to full remission in 80% of the test mice. Importantly, the depletion and enrichment of CD133 TNBCs highlighted the role of CD133+ cancer cells in regulating tumor growth and progression. Collectively, our results demonstrate that dual targeting with bispecific CSANs can be effective against heterogenous tumor cell populations and that elimination of primary and CD133+ CSCs may be necessary for eradication of at least a subset of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Molécula de Adesão da Célula Epitelial , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Linfócitos T , Células-Tronco Neoplásicas/patologia , Antígeno AC133
4.
Cancers (Basel) ; 13(16)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34439149

RESUMO

Clinical studies validated antibodies directed against HER2, trastuzumab, and pertuzumab, as useful methodology to target breast cancer cases where HER2 is expressed. The hope was that HER2 targeting using these antibodies in ovarian cancer patients would prove useful as well, but clinical studies have shown lackluster results in this setting, indicating a need for a more comprehensive approach. Immunotherapy approaches stimulating the innate immune system show great promise, although enhancing natural killer (NK) function is not an established mainstream immunotherapy. This study focused on a new nanobody platform technology in which the bispecific antibody was altered to incorporate a cytokine. Herein we describe bioengineered CAM1615HER2 consisting of a camelid VHH antibody fragment recognizing CD16 and a single chain variable fragment (scFv) recognizing HER2 cross-linked by the human interleukin-15 (IL-15) cytokine. This tri-specific killer engager (TriKETM) showed in vitro prowess in its ability to kill ovarian cancer human cell lines. In addition, we demonstrated its efficacy in inducing potent anti-cancer effects in an in vivo xenograft model of human ovarian cancer engrafting both cancer cells and human NK cells. While previous approaches with trastuzumab and pertuzumab faltered in ovarian cancer, the hope is incorporating targeting and cytokine priming within the same molecule will enhance efficacy in this setting.

5.
Mol Ther ; 29(12): 3410-3421, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174441

RESUMO

Natural killer (NK) cells mediate the cytolysis of transformed cells and are currently used as an adoptive cellular therapy to treat cancer. Infection with human cytomegalovirus has been shown to expand a subset of "adaptive" NK cells expressing the activation receptor NKG2C that have preferred functional attributes distinct from conventional NK cells. Because NKG2C delivers a strong activating signal to NK cells, we hypothesized that NKG2C could specifically trigger NK-cell-mediated antitumor responses. To elicit a tumor-directed response from NKG2C+ NK cells, we created an anti-NKG2C/IL-15/anti-CD33 killer engager called NKG2C-KE that directs NKG2C+ cells to target CD33+ cells and tumor-associated antigen expressed by acute myelogenous leukemia cells. The NKG2C-KE induced specific degranulation, interferon-γ production, and proliferation of NKG2C-expressing NK cells from patients who reactivated cytomegalovirus after allogeneic transplantation. The NKG2C-KE was also tested in a more homogeneous system using induced pluripotent stem cell (iPSC)-derived NK (iNK) cells that have been engineered to express NKG2C at high levels. The NKG2C-KE triggered iNK-cell-mediated cytotoxicity against CD33+ cells and primary AML blasts. The NKG2C-KE-specific interaction with adaptive NK and NKG2C+ iNK cells represents a new immunotherapeutic paradigm that uniquely engages highly active NK cells to induce cytotoxicity against AML through redirected targeting.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Citomegalovirus , Humanos , Interleucina-15 , Células Matadoras Naturais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia
6.
Blood Adv ; 5(4): 1069-1080, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33599743

RESUMO

Expression of programmed cell death protein 1 (PD-1) on natural killer (NK) cells has been difficult to analyze on human NK cells. By testing commercial clones and novel anti-PD-1 reagents, we found expression of functional PD-1 on resting human NK cells in healthy individuals and reconstituting NK cells early after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Peripheral blood samples from healthy individuals and transplant recipients were stained for PD-1 expression using the commercial anti-PD-1 clone PD1.3.1.3, fluorescein isothiocyanate (FITC)-labeled pembrolizumab, or an FITC-labeled single-chain variable fragment (scFv) reagent made from pembrolizumab. These reagents identified low yet consistent basal PD-1 expression on resting NK cells, a finding verified by finding lower PD-1 transcripts in sorted NK cells compared with those in resting or activated T cells. An increase in PD-1 expression was identified on paired resting NK cells after allo-HSCT. Blockade of PD-1 on resting NK cells from healthy donors with pembrolizumab did not enhance NK function against programmed death-ligand 1 (PD-L1)-expressing tumor lines, but blocking with its scFv derivative resulted in a twofold increase in NK cell degranulation and up to a fourfold increase in cytokine production. In support of this mechanism, PD-L1 overexpression of K562 targets suppressed NK cell function. Interleukin-15 (IL-15) activity was potent and could not be further enhanced by PD-1 blockade. A similar increase in function was observed with scFv PD-1 blockade on resting blood NK cells after allo-HSCT. We identify the functional importance of the PD-1/PD-L1 axis on human NK cells in which blockade or activation to overcome inhibition will enhance NK cell-mediated antitumor control.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Humanos , Células Matadoras Naturais , Ativação Linfocitária , Receptor de Morte Celular Programada 1
7.
Leukemia ; 35(6): 1586-1596, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33097838

RESUMO

The low 5-year survival rate for patients with acute myeloid leukemia (AML), primarily caused due to disease relapse, emphasizes the need for better therapeutic strategies. Disease relapse is facilitated by leukemic stem cells (LSCs) that are resistant to standard chemotherapy and promote tumor growth. To target AML blasts and LSCs using natural killer (NK) cells, we have developed a trispecific killer engager (TriKETM) molecule containing a humanized anti-CD16 heavy chain camelid single-domain antibody (sdAb) that activates NK cells, an IL-15 molecule that drives NK-cell priming, expansion and survival, and a single-chain variable fragment (scFv) against human CLEC12A (CLEC12A TriKE). CLEC12A is a myeloid lineage antigen that is highly expressed by AML cells and LSCs, but not expressed by normal hematopoietic stem cells (HSCs), thus minimizing off-target toxicity. The CLEC12A TriKE induced robust NK-cell specific proliferation, enhanced NK-cell activation, and killing of both AML cell lines and primary patient-derived AML blasts in vitro while sparing healthy HSCs. Additionally, the CLEC12A TriKE was able to reduce tumor burden in preclinical mouse models. These findings highlight the clinical potential of the CLEC12A TriKE for the effective treatment of AML.


Assuntos
Imunoterapia/métodos , Interleucina-15/metabolismo , Células Matadoras Naturais/imunologia , Lectinas Tipo C/imunologia , Leucemia Mieloide Aguda/terapia , Receptores de IgG/imunologia , Receptores Mitogênicos/imunologia , Anticorpos de Domínio Único/farmacologia , Animais , Apoptose , Proliferação de Células , Feminino , Proteínas Ligadas por GPI/imunologia , Humanos , Lectinas Tipo C/antagonistas & inibidores , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Receptores Mitogênicos/antagonistas & inibidores , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Blood Adv ; 4(20): 5118-5132, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33085758

RESUMO

In an attempt to identify novel markers and immunological targets in leukemic stem cells (LSCs) in acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), we screened bone marrow (BM) samples from patients with AML (n = 274) or CML (n = 97) and controls (n = 288) for expression of cell membrane antigens on CD34+/CD38- and CD34+/CD38+ cells by multicolor flow cytometry. In addition, we established messenger RNA expression profiles in purified sorted CD34+/CD38- and CD34+/CD38+ cells using gene array and quantitative polymerase chain reaction. Aberrantly expressed markers were identified in all cohorts. In CML, CD34+/CD38- LSCs exhibited an almost invariable aberration profile, defined as CD25+/CD26+/CD56+/CD93+/IL-1RAP+. By contrast, in patients with AML, CD34+/CD38- cells variably expressed "aberrant" membrane antigens, including CD25 (48%), CD96 (40%), CD371 (CLL-1; 68%), and IL-1RAP (65%). With the exception of a subgroup of FLT3 internal tandem duplication-mutated patients, AML LSCs did not exhibit CD26. All other surface markers and target antigens detected on AML and/or CML LSCs, including CD33, CD44, CD47, CD52, CD105, CD114, CD117, CD133, CD135, CD184, and roundabout-4, were also found on normal BM stem cells. However, several of these surface targets, including CD25, CD33, and CD123, were expressed at higher levels on CD34+/CD38- LSCs compared with normal BM stem cells. Moreover, antibody-mediated immunological targeting through CD33 or CD52 resulted in LSC depletion in vitro and a substantially reduced LSC engraftment in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Together, we have established surface marker and target expression profiles of AML LSCs and CML LSCs, which should facilitate LSC enrichment, diagnostic LSC phenotyping, and development of LSC-eradicating immunotherapies.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , ADP-Ribosil Ciclase 1/genética , Animais , Antígenos CD34 , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos NOD , Células-Tronco Neoplásicas
9.
Cancers (Basel) ; 12(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961861

RESUMO

We improved the bispecific antibody platform that primarily engages natural killer (NK) cells to kill cancer cells through antibody-dependent cellular cytotoxicity (ADCC) by adding IL-15 as a crosslinker that expands and self-sustains the effector NK cell population. The overall goal was to target B7-H3, an established marker predominantly expressed on cancer cells and minimally expressed on normal cells, and prove that it could target cancer cells in vitro and inhibit tumor growth in vivo. The tri-specific killer engager (TriKETM) was assembled by DNA shuffling and ligation using DNA encoding a camelid anti-CD16 antibody fragment, a wild-type IL-15 moiety, and an anti-B7-H3 scFv (clone 376.96). The expressed and purified cam1615B7H3 protein was tested for in vitro NK cell activity against a variety of tumors and in vivo against a tagged human MA-148 ovarian cancer cell line grafted in NSG mice. cam1615B7H3 showed specific NK cell expansion, high killing activity across a range of B7-H3+ carcinomas, and the ability to mediate growth inhibition of aggressive ovarian cancer in vivo. cam1615B7H3 TriKE improves NK cell function, expansion, targeted cytotoxicity against various types of B7-H3-positive human cancer cell lines, and delivers an anti-cancer effect in vivo in a solid tumor setting.

10.
Cancer Immunol Res ; 8(9): 1139-1149, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661096

RESUMO

Natural killer (NK) cells are potent immune modulators that can quickly lyse tumor cells and elicit inflammatory responses. These characteristics make them ideal candidates for immunotherapy. However, unlike T cells, NK cells do not possess clonotypic receptors capable of specific antigen recognition and cannot expand via activating receptor signals alone. To enable NK cells with these capabilities, we created and have previously described a tri-specific killer engager (TriKE) platform capable of inducing antigen specificity and cytokine-mediated NK-cell expansion. TriKE molecules have three arms: (i) a single-chain variable fragment (scFv) against the activating receptor CD16 on NK cells to trigger NK-cell activation, (ii) an scFv against a tumor-associated antigen (CD33 here) to induce specific tumor target recognition, and (iii) an IL15 moiety to trigger NK-cell expansion and priming. Here, we demonstrate that by modifying the anti-CD16 scFv with a humanized single-domain antibody against CD16, we improved TriKE functionality. A CD33-targeting second-generation TriKE induced stronger and more specific NK-cell proliferation without T-cell stimulation, enhanced in vitro NK-cell activation and killing of CD33-expressing targets, and improved tumor control in preclinical mouse models. Given these improved functional characteristics, we propose rapid translation of second-generation TriKEs into the clinic.


Assuntos
Imunoterapia Adotiva/métodos , Interleucina-15/administração & dosagem , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Animais , Modelos Animais de Doenças , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/imunologia , Leucemia Promielocítica Aguda/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Biomolecules ; 10(6)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630411

RESUMO

Ligand-targeted toxins (LTTs) are bioengineered molecules which are composed of a targeting component linked to a toxin that induces cell death once the LTT binds its target. Bispecific targeting allows for the simultaneous targeting of two receptors. In this review, we mostly focus on the epidermal growth factor receptor (EGFR) as a target. We discuss the development and testing of a bispecific LTT targeting EGFR and urokinase-type plasminogen activator receptor (uPAR) as two attractive targets implicated in tumor growth and in the regulation of the tumor microvasculature in solid tumors. In vitro and mouse xenograft studies have shown that EGFR-targeted bispecific angiotoxin (eBAT) is effective against human solid tumors. Canine studies have shown that eBAT is both safe and effective against canine hemangiosarcoma, which is physiologically similar to human angiosarcoma. Finding the appropriate dosing strategy and sequencing of eBAT administration, in combination with other therapeutics, are among important factors for future directions. Together, the data indicate that eBAT targets cancer stem cells, it may have a role in inhibiting human tumor vasculature, and its bispecific conformation may have a role in reducing toxicity in comparative oncologic trials in dogs.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Hemangiossarcoma/tratamento farmacológico , Receptores de Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Animais , Receptores ErbB/metabolismo , Hemangiossarcoma/metabolismo , Humanos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo
12.
Vet Comp Oncol ; 18(4): 664-674, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32187827

RESUMO

We previously reported that eBAT, an EGF-targeted angiotoxin, was safe and it improved the overall survival for dogs with splenic haemangiosarcoma when added to the standard of care in a single cycle of three administrations in the minimal residual disease setting. Our objective for the SRCBST-2 trial was to assess whether increased dosing through multiple cycles of eBAT would be well tolerated and would further enhance the benefits of eBAT. Eligibility was expanded to dogs with stage 3 haemangiosarcoma, provided that gross lesions could be surgically excised. The interval between eBAT and the start of chemotherapy was reduced, and the experimental therapy was expanded to three cycles, each administered at the biologically active dose (50 µg/kg) on a Monday/Wednesday/Friday schedule following splenectomy, and scheduled 1 week prior to the first, second and fifth doxorubicin chemotherapy. Twenty-five dogs were enrolled; six experienced acute hypotension with two requiring hospitalization. Self-limiting elevation of ALT was observed in one dog. A statistically significant survival benefit was not seen in this study in eBAT-treated dogs compared with a Contemporary comparison group of dogs with stages 1-3 haemangiosarcoma treated with standard of care alone. Our results indicate that repeated dosing cycles of eBAT starting 1 week prior to doxorubicin chemotherapy led to greater toxicity and reduced efficacy compared with a single cycle given between surgery and a delayed start of chemotherapy. Further work is needed to understand the precise mechanisms of action of eBAT in order to optimize its clinical benefits in the treatment of canine haemangiosarcoma and other tumours. IACUC Protocols 1110A06186 and 1507-32804A.


Assuntos
Quimioterapia Adjuvante/veterinária , Doenças do Cão/tratamento farmacológico , Fator de Crescimento Epidérmico/farmacologia , Hemangiossarcoma/veterinária , Neoplasias Esplênicas/veterinária , Animais , Antibióticos Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Quimioterapia Adjuvante/métodos , Doenças do Cão/patologia , Cães , Doxorrubicina/uso terapêutico , Feminino , Hemangiossarcoma/tratamento farmacológico , Masculino , Neoplasias Esplênicas/tratamento farmacológico , Neoplasias Esplênicas/patologia , Resultado do Tratamento
13.
Clin Cancer Res ; 25(24): 7463-7474, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31548348

RESUMO

PURPOSE: Acute myeloid leukemia (AML) is a highly aggressive form of leukemia, which results in poor survival outcomes. Currently, diagnosis and prognosis are based on invasive single-point bone marrow biopsies (iliac crest). There is currently no AML-specific noninvasive imaging method to detect disease, including in extramedullary organs, representing an unmet clinical need. About 85% to 90% of human myeloid leukemia cells express CD33 cell surface receptors, highlighting CD33 as an ideal candidate for AML immunoPET. EXPERIMENTAL DESIGN: We evaluated whether [64Cu]Cu-DOTA-anti-CD33 murine mAb can be used for immunoPET imaging of AML in a preclinical model. MicroCT was adjusted to detect spatial/anatomical details of PET activity. For translational purposes, a humanized anti-CD33 antibody was produced; we confirmed its ability to detect disease and its distribution. We reconfirmed/validated CD33 antibody-specific targeting with an antibody-drug conjugate (ADC) and radioimmunotherapy (RIT). RESULTS: [64Cu]Cu-DOTA-anti-CD33-based PET-CT imaging detected CD33+ AML in mice with high sensitivity (95.65%) and specificity (100%). The CD33+ PET activity was significantly higher in specific skeletal niches [femur (P < 0.00001), tibia (P = 0.0001), humerus (P = 0.0014), and lumber spine (P < 0.00001)] in AML-bearing mice (over nonleukemic control mice). Interestingly, the hybrid PET-CT imaging showed high disease activity in the epiphysis/metaphysis of the femur, indicating regional spatial heterogeneity. Anti-CD33 therapy using newly developed humanized anti-CD33 mAb as an ADC (P = 0.02) and [225Ac]Ac-anti-CD33-RIT (P < 0.00001) significantly reduced disease burden over that of respective controls. CONCLUSIONS: We have successfully developed a novel anti-CD33 immunoPET-CT-based noninvasive modality for AML and its spatial distribution, indicating a preferential skeletal niche.


Assuntos
Radioisótopos de Cobre/química , Compostos Heterocíclicos com 1 Anel/química , Imunoconjugados/farmacocinética , Leucemia Mieloide Aguda/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/farmacocinética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Animais , Anticorpos Monoclonais Humanizados/farmacocinética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Blood Adv ; 3(6): 897-907, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30890546

RESUMO

Chronic lymphocytic leukemia (CLL) is characterized by chronic clonal expansion of mature CD19-expressing B lymphocytes and global dysfunction of immune effectors, including natural killer (NK) cells. CLL remains incurable, and novel approaches to refractory CLL are needed. Our group has previously described trispecific killer engager (TriKE) molecules that redirect NK cell function against tumor cells. TriKE reagents simultaneously bind an activating receptor on NK cells, CD16, and a tumor antigen while also providing an NK cell expansion signal via an interleukin-15 moiety. Here we developed the novel CD19-targeting 161519 TriKE. We demonstrate that 161519 TriKE induced killing of a CD19-expressing Burkitt's lymphoma cell line and examined the impact on primary CLL targets using healthy donor and patient NK cells. 161519 TriKE induced potent healthy donor NK cell activation, proliferation, and directed killing. Furthermore, 161519 TriKE rescued the inflammatory function of NK cells obtained from CLL patient peripheral blood samples. Finally, we show that 161519 TriKE induced better directed killing of CLL in vitro when compared with rituximab. In conclusion, 161519 TriKE drives a potent activating and proliferative signal on NK cells, resulting in enhanced NK cell expansion and CLL target killing. Our findings indicate the potential immunotherapeutic value of 161519 TriKE in CLL.


Assuntos
Antígenos CD19/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Proliferação de Células , Imunoterapia/métodos , Células Matadoras Naturais/citologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Antineoplásicos Imunológicos/metabolismo , Linfócitos B/imunologia , Células Cultivadas , Proteínas Ligadas por GPI/metabolismo , Humanos , Interleucina-15 , Células Matadoras Naturais/imunologia , Receptores de IgG/metabolismo
15.
Adv Mater ; 31(10): e1806899, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30663123

RESUMO

The development of 3D in vitro models capable of recapitulating native tumor microenvironments could improve the translatability of potential anticancer drugs and treatments. Here, 3D bioprinting techniques are used to build tumor constructs via precise placement of living cells, functional biomaterials, and programmable release capsules. This enables the spatiotemporal control of signaling molecular gradients, thereby dynamically modulating cellular behaviors at a local level. Vascularized tumor models are created to mimic key steps of cancer dissemination (invasion, intravasation, and angiogenesis), based on guided migration of tumor cells and endothelial cells in the context of stromal cells and growth factors. The utility of the metastatic models for drug screening is demonstrated by evaluating the anticancer efficacy of immunotoxins. These 3D vascularized tumor tissues provide a proof-of-concept platform to i) fundamentally explore the molecular mechanisms of tumor progression and metastasis, and ii) preclinically identify therapeutic agents and screen anticancer drugs.


Assuntos
Biomimética , Neoplasias , Impressão Tridimensional , Engenharia Tecidual , Microambiente Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Neoplasias/patologia , Alicerces Teciduais/química
16.
J Clin Med ; 9(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888091

RESUMO

The objective of this study was to develop and explore a novel CD133-targeting immunotoxin (IT) for use in combination with the endosomal escape method photochemical internalization (PCI). scFvCD133/rGelonin was recombinantly constructed by fusing a gene (scFvCD133) encoding the scFv that targets both non-glycosylated and glycosylated forms of both human and murine CD133/prominin-1 to a gene encoding the ribosome-inactivating protein (RIP) gelonin (rGelonin). RIP-activity was assessed in a cell-free translation assay. Selective binding and intracellular accumulation of scFvCD133/rGelonin was evaluated by flow cytometry and fluorescence microscopy. PCI of scFvCD133/rGelonin was explored in CD133high and CD133low cell lines and a CD133neg cell line, where cytotoxicity was evaluated by the MTT assay. scFvCD133/rGelonin exhibited superior binding to and a higher accumulation in CD133high cells compared to CD133low cells. No cytotoxic responses were detected in either CD133high or CD133low cells after 72 h incubation with <100 nM scFvCD133/rGelonin. Despite a severe loss in RIP-activity of scFvCD133/rGelonin compared to free rGelonin, PCI of scFvCD133/rGelonin induced log-fold reduction of viability compared to PCI of rGelonin. Strikingly, PCI of scFvCD133/rGelonin exceeded the cytotoxicity of PCI of rGelonin also in CD133low cells. In conclusion, PCI promotes strong cytotoxic activity of the per se non-toxic scFvCD133/rGelonin in both CD133high and CD133low cancer cells.

17.
Biomedicines ; 7(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577664

RESUMO

Few immunotoxins or targeted toxins have become mainline cancer therapies. Still immunotoxins continue to be of major interest and subject of research and development as alternative therapies for drug resistant cancer. A major matter of concern continues to be immunogenicity exemplified by the anti-toxin response of the treated patient. Since some of our most effective toxins are bacterial in nature and bacterial proteins are highly immunogenic, this review describes some efforts to address this pressing issue.

18.
Clin Pharmacol ; 10: 113-121, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288129

RESUMO

PURPOSE: Human sarcomas are rare and difficult to treat cancerous tumors typically arising from soft tissue or bone. Conversely, carcinomas are the most common cancer subtype in humans and the primary cause of mortality across all cancer patients. While conventional therapeutic modalities can prolong disease-free intervals and survival in some cases, treatment of refractory or recurrent solid tumors is challenging, and tumor-related mortality remains unacceptably high. The identification of overexpressed cell surface receptors on sarcoma and carcinoma cells has provided a valuable tool to develop targeted toxins as an alternative anticancer strategy. Recent investigation of recombinant protein-linked toxins that specifically target these cancer receptors has led to the development of highly specific, cytotoxic, and deimmunized drugs that can kill cancer cells. METHODS: This study investigated a recombinant protein called epidermal growth factor bispecific angiotoxin (eBAT), which is designed to target the epidermal growth factor receptor (EGFR) on cancer cells and the urokinase plasminogen activator receptor (uPAR) on cancer cells and associated tumor vasculature. Both receptors are expressed by a variety of human sarcomas and carcinomas. Flow cytometry techniques were used to determine binding affinity of eBAT to cancer cells, and proliferation assays were performed to calculate tumor killing ability based on half-maximal inhibitory concentrations. RESULTS: eBAT demonstrated cytotoxicity against a variety of sarcoma and carcinoma cells that overexpress EGFR and uPAR in vitro and showed greater cell killing ability and binding affinity to cancer cells compared with its monospecific counterparts. CONCLUSION: The results of our study are promising, and further studies will be necessary to confirm the applicability of eBAT as a supplementary therapy for a variety of sarcomas, carcinomas, and possibly other refractory malignancies that express EGFR and uPAR.

20.
Blood Adv ; 2(12): 1459-1469, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29941459

RESUMO

Myelodysplastic syndrome (MDS) is a clonal heterogeneous stem cell disorder driven by multiple genetic and epigenetic alterations resulting in ineffective hematopoiesis. MDS has a high frequency of immune suppressors, including myeloid-derived suppressor cells (MDSCs), that collectively result in a poor immune response. MDSCs in MDS patients express CD155 that ligates the T-cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) and delivers an inhibitory signal to natural killer (NK) cells. To mediate a productive immune response against MDS, negative regulatory checkpoints, like TIGIT, expressed on MDS NK cells must be overcome. NK cells can be directed to lyse MDS cells by bispecific killer engagers (BiKEs) that ligate CD16 on NK cells and CD33 on MDS cells. However, such CD16 × CD33 (1633) BiKEs do not induce the proliferative response in MDS NK cells needed to sustain their function. Here, we show that the addition of an NK stimulatory cytokine, interleukin-15 (IL-15), into the BiKE platform leads to productive IL-15 signaling without TIGIT upregulation on NK cells from MDS patients. Lower TIGIT expression allowed NK cells to resist MDSC inhibition. When compared with 1633 BiKE, 161533 trispecific killer engager (TriKE)-treated NK cells demonstrated superior killing kinetics associated with increased STAT5 phosphorylation. Furthermore, 161533 TriKE-treated MDS NK cells had higher proliferation and enhanced NK-cell function than 1633 BiKE-treated cells without the IL-15 linker. Collectively, our data demonstrate novel characteristics of the 161533 TriKE that support its application as an immunotherapeutic agent for MDS patients.


Assuntos
Células Matadoras Naturais/efeitos dos fármacos , Síndromes Mielodisplásicas/patologia , Células Supressoras Mieloides/patologia , Adulto , Anticorpos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Proteínas Ligadas por GPI/imunologia , Células HL-60 , Humanos , Células Matadoras Naturais/imunologia , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/imunologia , Células Supressoras Mieloides/imunologia , Receptores de IgG/imunologia , Receptores Imunológicos/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Células Tumorais Cultivadas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA