Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123031, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37392540

RESUMO

Attenuated total reflectance Fourier transform infrared (ATR-FTIR) difference spectroscopy has been employed for a variety of applications spanning from reaction mechanisms analysis to interface phenomena assessment. This technique is based on the detection of spectral changes induced by the chemical modification of the original sample. In the present study, we highlight the potential of the ATR-FTIR difference approach in the field of microbial biochemistry and biotechnology, reporting on the identification of main soluble species consumed and released by growing bacteria during the biohydrogen production process. Specifically, the mid-infrared spectrum of a model culture broth, composed of glucose, malt extract and yeast extract, was used as background to acquire the FTIR difference spectrum of the same broth as modified by Enterobacter aerogenes metabolism. The analysis of difference signals revealed that only glucose is degraded during hydrogen evolution in anaerobic conditions, while ethanol and 2,3-butanediol are the main soluble metabolites released with H2. This fast and easy analytical approach can therefore represent a sustainable strategy to screen different bacterial strains and to select raw and waste materials to be employed in the field of biofuel production.


Assuntos
Biocombustíveis , Biotecnologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
2.
ACS Appl Mater Interfaces ; 15(25): 30674-30683, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37326387

RESUMO

Enantiorecognition of a chiral analyte usually requires the ability to respond with high specificity to one of the two enantiomers of a chiral compound. However, in most cases, chiral sensors have chemical sensitivity toward both enantiomers, showing differences only in the intensity of responses. Furthermore, specific chiral receptors are obtained with high synthetic efforts and have limited structural versatility. These facts hinder the implementation of chiral sensors in many potential applications. Here, we utilize the presence of both enantiomers of each receptor to introduce a novel normalization that allows the enantio-recognition of compounds even when single sensors are not specific for one enantiomer of a target analyte. For this purpose, a novel protocol that permits the fabrication of a large set of enantiomeric receptor pairs with low synthetic efforts by combining metalloporphyrins with (R,R)- and (S,S)-cyclohexanohemicucurbit[8]uril is developed. The potentialities of this approach are investigated by an array of four pairs of enantiomeric sensors fabricated using quartz microbalances since gravimetric sensors are intrinsically non-selective toward the mechanism of interaction of analytes and receptors. Albeit the weak enantioselectivity of single sensors toward limonene and 1-phenylethylamine, the normalization allows the correct identification of these enantiomers in the vapor phase indifferent to their concentration. Remarkably, the achiral metalloporphyrin choice influences the enantioselective properties, opening the way to easily obtain a large library of chiral receptors that can be implemented in actual sensor arrays. These enantioselective electronic noses and tongues may have a potential striking impact in many medical, agrochemical, and environmental fields.

3.
Nanomaterials (Basel) ; 13(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177071

RESUMO

Inorganic chiral nanoparticles are attracting more and more attention due to their peculiar optical properties and potential biological applications, such as bioimaging, therapeutics, and diagnostics. Among inorganic chiral nanoparticles, gold chiral nanostructures were demonstrated to be very interesting in this context, with good physical chemical stability and also the possibility to decorate the surface, improving biomedical application as the interaction with the bio-systems. Gold (Au) nanostructures were synthesized according to a seed-mediated procedure which envisages the use of cetyltrimethylammonium bromide (CTAB) as the capping agent and L- and D-cysteine to promote chirality. Au nanostructures have been demonstrated to have opposite circular dichroism signals depending on the amino acid enantiomer used during the synthesis. Then, a procedure to decorate the Au surface with penicillamine, a drug used for the treatment of Wilson's disease, was developed. The composite material of gold nanoparticles/penicillamine was characterized using electron microscopy, and the penicillamine functionalization was monitored by means of UV-Visible, Raman, and infrared spectroscopy, highlighting the formation of the Au-S bond. Furthermore, electron circular dichroism was used to monitor the chirality of the synthesized nanostructures and it was demonstrated that both penicillamine enantiomers can be successfully bonded with both the enantiomers of the gold nanostructures without affecting gold nanoparticles' chirality. The effective modification of nanostructures' surfaces via penicillamine introduction allowed us to address the important issue of controlling chirality and surface properties in the chiral nano-system.

4.
Langmuir ; 37(47): 13882-13889, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34784714

RESUMO

A Langmuir film of cubane-bridged bisporphyrin (H2por-cubane-H2por) at the air/water interface was developed and characterized. The floating film was successfully employed for the chiral discrimination between l- and d-histidine. The enantioselective behavior persisted after the deposition of the film on a solid support using the Langmuir-Schaefer method. Distinct absorption and reflection spectra were observed in the presence of l- or d-histidine, revealing that conformational switching was governed by the interaction between H2por-cubane-H2por and the histidine enantiomer. The mechanism of chiral selection was investigated using an ad hoc modified nulling ellipsometer, indicating the anti-conformation was dominant in the presence of l-histidine, whereas the presence of d-histidine promoted the formation of tweezer conformation.


Assuntos
Porfirinas , Histidina , Conformação Molecular , Estereoisomerismo
5.
Colloids Surf B Biointerfaces ; 204: 111794, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33940520

RESUMO

The lack of studies involving the effects in human health associated with the chronic ingestion of pollutants lead to the path of investigating the action of these compounds in cell membrane models. We demonstrated the interaction (causes and consequences) of the hormone 17 α-ethinylestradiol (EE2) with lipid monolayers (prepared as Langmuir films) and bilayers prepared as small unilamellar vesicles (SUVs) and giant unilamellar vesicles (GUVs). Both fluidity and majority chemical composition of real plasma cell membrane were guaranteed using the phospholipid 1-palmitoil-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC). Surface pressure-mean molecular area (π-A) isotherms and PM-IRRAS measurements highlighted the strong interaction of EE2 with POPC monolayers, leading the hormone to remain at the air/water interface and promoting its penetration into the phospholipid hydrophobic chains. In the case of bilayers, the entrance of the hormone inside the SUV is likely facilitated by their high curvature. In GUVs, EE2 was responsible for changes in the spherical shape, forming structures like buds and lipid protrusions. The set of results indicates the strong effects of EE2 on fluid membranes, which is an important feature to predict its damage in human cells.


Assuntos
Anticoncepcionais , Lipossomas Unilamelares , Etinilestradiol , Humanos , Bicamadas Lipídicas , Fosfatidilcolinas , Fosfolipídeos
6.
Nanomaterials (Basel) ; 11(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919207

RESUMO

Carbon nanomaterials are a group of materials characterized by sp2/sp3 carbon backbone which, combined with surface atoms and/or chemical groups, ensures peculiar physical chemical features for a wide range of applications. Among these materials, carbon dots and carbon nanoparticles belong to carbon nanomaterials with a few nanometer dimensions. In this work, carbon nanoparticles were produced from spent coffee grounds as sustainable carbon source through a simple, cheap and eco-friendly procedure according to an oxidation process (at controlled temperature) driven by hydrogen peroxide. Atomic Force Microscope (AFM) and fluorescence, UV-Vis absorption, FT-IR and Raman spectroscopy were used to assess the formation of carbon nanomaterials of about 10 nm with the typical emission and absorption properties of carbon dots and peculiar surface features. In fact, the presence of heteroatoms, i.e., phosphorus, and the carbonyl/carboxyl surface groups on carbon nanoparticles, was proposed to confer peculiar properties allowing the fast Mn(VII) reduction to Mn(II) at neutral pH and the Cr(VI) reduction to Cr(III) in weak acid aqueous media.

7.
Polymers (Basel) ; 13(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445737

RESUMO

Cellulose nanomaterials have been widely investigated in the last decade, unveiling attractive properties for emerging applications. The ability of sulfated cellulose nanocrystals (CNCs) to guide the supramolecular organization of amphiphilic fullerene derivatives at the air/water interface has been recently highlighted. Here, we further investigated the assembly of Langmuir hybrid films that are based on the electrostatic interaction between cationic fulleropyrrolidines deposited at the air/water interface and anionic CNCs dispersed in the subphase, assessing the influence of additional negatively charged species that are dissolved in the water phase. By means of isotherm acquisition and spectroscopic measurements, we demonstrated that a tetra-sulfonated porphyrin, which was introduced in the subphase as anionic competitor, strongly inhibited the binding of CNCs to the floating fullerene layer. Nevertheless, despite the strong inhibition by anionic molecules, the mutual interaction between fulleropyrrolidines at the interface and the CNCs led to the assembly of robust hybrid films, which could be efficiently transferred onto solid substrates. Interestingly, ITO-electrodes that were modified with five-layer hybrid films exhibited enhanced electrical capacitance and produced anodic photocurrents at 0.4 V vs Ag/AgCl, whose intensity (230 nA/cm2) proved to be four times higher than the one that was observed with the sole fullerene derivative (60 nA/cm2).

8.
Bioengineering (Basel) ; 7(4)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260520

RESUMO

The burst of research papers focused on the tissue engineering and regeneration recorded in the last years is justified by the increased skills in the synthesis of nanostructures able to confer peculiar biological and mechanical features to the matrix where they are dispersed. Inorganic, organic and hybrid nanostructures are proposed in the literature depending on the characteristic that has to be tuned and on the effect that has to be induced. In the field of the inorganic nanoparticles used for decorating the bio-scaffolds, the most recent contributions about the paramagnetic and superparamagnetic nanoparticles use was evaluated in the present contribution. The intrinsic properties of the paramagnetic nanoparticles, the possibility to be triggered by the simple application of an external magnetic field, their biocompatibility and the easiness of the synthetic procedures for obtaining them proposed these nanostructures as ideal candidates for positively enhancing the tissue regeneration. Herein, we divided the discussion into two macro-topics: the use of magnetic nanoparticles in scaffolds used for hard tissue engineering for soft tissue regeneration.

9.
Molecules ; 25(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824375

RESUMO

This review focuses on the description of several examples of supramolecular assemblies of phthalocyanine derivatives differently functionalized and interfaced with diverse kinds of chemical species for photo-induced phenomena applications. In fact, the role of different substituents was investigated in order to tune peculiar aggregates formation as well as, with the same aim, the possibility to interface these derivatives with other molecular species, as electron donor and acceptor, carbon allotropes, cyclodextrins, protein cages, drugs. Phthalocyanine photo-physical features are indeed really interesting and appealing but need to be preserved and optimized. Here, we highlight that the supramolecular approach is a versatile method to build up very complex and functional architectures. Further, the possibility to minimize the organization energy and to facilitate the spontaneous assembly of the molecules, in numerous examples, has been demonstrated to be more useful and performing than the covalent approach.


Assuntos
Indóis/química , Luz , Fotoquímica , Polímeros/química , Transporte de Elétrons , Isoindóis , Termodinâmica
10.
Materials (Basel) ; 13(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630074

RESUMO

It is well known that energetic demand and environmental pollution are strictly connected; the side products of vehicle and industrial exhausts are considered extremely dangerous for both human and environmental health. In the last years, the possibility to simultaneously photo-degrade water dissolved pollutants by means of ZnO nanostructures and to use their piezoelectric features to enhance the photo-degradation process has been investigated. In the present contribution, an easy and low-cost wet approach to synthetize hexagonal elongated ZnO microstructures in the wurtzite phase was developed. ZnO performances as photo-catalysts, under UV-light irradiation, were confirmed on water dissolved methylene blue dye. Piezoelectric responses of the synthetized ZnO microstructures were evaluated, as well, by depositing them into films onto flexible substrates, and a home-made layout was developed, in order to stimulate the ZnO microstructures deposited on solid supports by means of mechanical stress and UV photons, simultaneously. A relevant increment of the photo-degradation efficiency was observed when the piezopotential was applied, proposing the present approach as a completely eco-friendly tool, able to use renewable energy sources to degrade water solved pollutants.

11.
Nanomaterials (Basel) ; 10(8)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722422

RESUMO

In recent years, the presence of numerous xenobiotic substances, such as antibiotics, has been detected in water environments. They can be considered as environmental contaminants, even if their effect on human health has yet to be totally understood. Several approaches have been studied for the removal of these kinds of pollutants. Among these compounds, tetracycline (TC), a broad-spectrum antibiotic, is one of the most commonly found in water due to its widespread use. In the context of reducing the presence of TC in aqueous solution, in this contribution, a composite catalyst based on zinc oxide (ZnO) and iron oxide (γ-Fe2O3) was developed and its photocatalytic properties were investigated. The catalytic materials were synthesized by a microwave-assisted aqueous solution method and characterized by Field Emission Scanning Electron Microscope (FESEM), X-Ray Fluorescence (XRF) and Brunauer-Emmett-Teller (BET) analysis. The TC concentration was evaluated by spectrophotometer measurements at specific time intervals. The performed photocatalytic experiments clearly demonstrated that the ZnO/γ-Fe2O3 composite catalyst presents significant photocatalytic activity, indeed a TC degradation efficiency of 88.52% was registered after 150 min. The presence of iron oxide in the structure of the catalyst enhances both the surface area and the pore volume, facilitating the adsorption of the analyte on the surface of nanostructures, a fundamental phase to optimize a photodegradation process. Moreover, ZnO was found to play the key role in the photocatalytic process assisted by γ-Fe2O3 which enhanced the TC degradation efficiency by 20%.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32195240

RESUMO

The interaction between homochiral substituted perylene bisimide (PBI) molecule and the D enantiomer of phenylalanine amino acid was monitored. Spectroscopic transitions of PBI derivative in aqueous solution in the visible range were used to evaluate the presence of D-phenylalanine. UV-visible, fluorescence, FT-IR, and AFM characterizations showed that D-phenylalanine induces significant variations in the chiral perylene derivative aggregation state and the mechanism is enantioselective as a consequence of the 3D analyte structure. The interaction mechanism was further investigated in presence of interfering amino acid (D-serine and D-histidine) confirming that both chemical structure and its 3D structure play a crucial role for the amino acid discrimination. A D-phenylalanine fluorescence sensor based on perylene was proposed. A limit of detection (LOD) of 64.2 ± 0.38 nM was calculated in the range 10-7-10-5 M and of 1.53 ± 0.89 µM was obtained in the range 10-5 and 10-3 M.

13.
Int J Biol Macromol ; 154: 291-306, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32173436

RESUMO

Type I collagen is the most abundant protein of the human body. Due to its favourable properties, collagen extracted from animal tissues is adopted to manufacture a wide range of devices for biomedical applications. Compared to bovine and porcine collagens, which are the most largely used, equine collagen is free from the risk of zoonosis, has no reported immune reactions, and has not religious constraints. In this work, a recently available type I collagen extracted from horse tendon was evaluated and compared with a commercially available collagen isoform derived from the same species and tissue. Detailed physical, chemical and biological investigations were performed, in agreement with the requirements of the current standard for the characterization of type I collagen to be used for the manufacture of Tissue Engineering Medical Products. To the best of our knowledge, this is the first report on the complete primary structure of the investigated collagen.


Assuntos
Materiais Biocompatíveis , Colágeno Tipo I/química , Cavalos , Tendões/química , Engenharia Tecidual , Alicerces Teciduais , Animais , Camundongos , Células NIH 3T3
14.
Macromol Biosci ; 20(5): e2000017, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32163225

RESUMO

Collagen represents one of the most widely used biomaterial for scaffolds fabrication in tissue engineering as it represents the mechanical support of natural tissues. It also provides physical scaffolding for cells and it influences their attachment, growth, and tissue regeneration. Among all fibrillary collagens, type I is considered one of the gold standard for scaffolds fabrication, thanks to its high biocompatibility, biodegradability, and hemostatic properties. It can be extracted by chemical and enzymatic protocols from several collagen-rich tissues, such as tendon and skin, of different animal species. Both the extraction processes and the manufacturing protocols for scaffolds fabrication provide structural and mechanical changes that can be tuned in order to deeply impact the properties of the final biomaterial. The aim of this review is to discuss the role of X-rays to study structural changes of type I collagen from fresh collagen-rich tissues (bovine, equine, fish) to the final scaffolds, with the aim to screen across available collagen sources and scaffolds fabrication protocols to be used in tissue regeneration.


Assuntos
Colágeno Tipo I/metabolismo , Derme/diagnóstico por imagem , Pele/diagnóstico por imagem , Tendões/diagnóstico por imagem , Engenharia Tecidual , Animais , Bovinos , Peixes , Cavalos , Raios X
15.
Artigo em Inglês | MEDLINE | ID: mdl-31552231

RESUMO

The aim of this work is to evaluate the effects of different extraction and material processing protocols on the collagen structure and hierarchical organization of equine tendons. Wide and Small Angle X-ray Scattering investigations on raw powders and thin films revealed that not only the extraction and purification treatments, but also the processing conditions may affect the extent of the protein crystalline domain and induce a nanoscale "shield effect." This is due to the supramolecular fiber organization, which protects the atomic scale structure from the modifications that occur during fabrication protocols. Moreover, X-ray analyses and Fourier Transform Infrared spectroscopy performed on the biomaterial sheds light on the relationship between processing conditions, triple helical content and the organization in atomic and nanoscale domains. It was found that the mechanical homogenization of the slurry in acidic solution is a treatment that ensures a high content of super-organization of collagen into triple helices and a lower crystalline domain in the material. Finally, mechanical tensile tests were carried out, proving that the acidic solution is the condition which most enhances both mechanical stiffness and supramolecular fiber organization of the films.

16.
Chemistry ; 25(62): 14123-14132, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31441551

RESUMO

Many strategies have been adopted to improve the photoinduced features of zinc oxide nanostructures for different application fields. In this work, zinc oxide has been synthesised and decorated by plasmonic metal nanoparticles to enhance its photocatalytic activity in the visible range. Furthermore, an insulating layer of SiO2 has been grown between the surface of zinc oxide nanoflakes and silver nanoparticles. A synthetic procedure that allows the accurate modulation of the insulating layer thickness in the range 5-40 nm has been developed. Evidences highlight the crucial role of the SiO2 layer in dramatically increasing photocatalytic water oxidation promoted by the nanostructure under both UV and visible illumination. An ideal thickness value of about 10 nm has been demonstrated to guarantee the plasmon-induced resonance energy-transfer process and to quench the Förster resonance energy-transfer mechanism; thus, optimising the local surface plasmon resonance effect and water oxidation properties.

17.
J Colloid Interface Sci ; 553: 390-401, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31228753

RESUMO

A perylene bisimide (PBI) derivative was utilized as photosensitizer for photodynamic therapy (PDT) applications, due to its high efficiency in singlet oxygen generation upon photoexcitation. It was immobilized onto a hydrophobized solid support, by means of the Langmuir-Schaefer (LS) technique, to achieve a preliminary medical device able to induce death of cancer cells in vitro. First, PBI derivative solutions, at two different concentrations (4.2 × 10-5 and 1.5 × 10-4 M) were chosen, based on the different PBI aggregation state, to be spread onto a water subphase in a Langmuir trough. Physico-chemical and morphological characterizations of the floating films were performed. Then the floating layers were transferred onto quartz substrates. The resulting multilayer LS films were characterized by spectroscopic measurements showing that the photochemical properties of the PBI derivative were well preserved even when immobilized. The LS film that exhibited the highest efficiency in the singlet oxygen production under light excitation was assessed in in vitro tests on human cervical carcinoma C13 cell line and the photo-toxicity was measured. This study revealed absence of cytotoxicity in dark conditions and a high photo-cytotoxicity toward cancer cells, making it a promising photoactive device.

18.
ACS Appl Mater Interfaces ; 11(18): 17079-17089, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30978000

RESUMO

Perylene bisimide derivatives show peculiar physical chemical features, such as a highly conjugated system, high extinction coefficients and elevated fluorescence quantum yields, making them suitable for the development of optical sensors of compounds of interest. In particular, they are characterized by the tendency to aggregate into π-π stacked supramolecular structures. In this contribution, the behavior of the PBI derivative N, N'-bis(2-(trimethylammonium)ethylene)perylene bisimide dichloride was investigated both in aqueous solution and on solid support. The electronic communication between PBI aggregates and biogenic amines was exploited in order to discriminate aromatic amines down to subnanomolar concentrations by observing PBI fluorescence variations in the presence of various amines and at different concentrations. The experimental findings were corroborated by density functional theory calculations. In particular, phenylethylamine and tyramine were demonstrated to be selectively detected down to 10-10 M concentration. Then, in order to develop a surface plasmon resonance (SPR) device, PBI was deposited onto a SPR support by means of the layer-by-layer method. PBI was deposited in the aggregated form and was demonstrated to preserve the capability to discriminate, selectively and with an outstanding analytical sensitivity, tyramine in the vapor phase and even if mixed with other aromatic amines.


Assuntos
Aminas Biogênicas/isolamento & purificação , Técnicas Biossensoriais , Fenetilaminas/isolamento & purificação , Tiramina/isolamento & purificação , Aminas Biogênicas/química , Corantes/química , Fluorescência , Imidas/química , Perileno/análogos & derivados , Perileno/química , Fenetilaminas/química , Pontos Quânticos/química , Soluções/química , Ressonância de Plasmônio de Superfície , Tiramina/química , Água/química
19.
Nanoscale ; 11(15): 7414-7423, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30938748

RESUMO

The possibility to employ carbon nanodots (CNDs) in solar devices was exploited by combining them with a fulleropyrrolidine derivative (FP2). The interaction between the two species was promoted by the presence of opposite electrostatic charges on CNDs (negatively charged) and FP2 (positively charged). The supramolecular dyad CNDs/FP2 generation was induced at the air/water interface of a Langmuir trough: water soluble CNDs were dissolved in the subphase and FP2 chloroform solution was spread on the subphase; the electrostatic interaction promoted the formation of the supramolecular adduct FP2/CNDs, which was then transferred onto solid substrates. Photo-induced charge transfer was promoted in the FP2/CNDs dyad and we demonstrated that the presence of CNDs increased the short-circuit current density, under light illumination, of a porphyrin-FP2/CNDs thin film by about 300% when compared with a more traditional porphyrin-FP2 solar device.

20.
J Colloid Interface Sci ; 533: 762-770, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30199832

RESUMO

Ethane-bridged bis-porphyrin derivatives are reported for the selective detection of various analytes in sensing applications. The central metal ion is able to rule specific molecular arrangements upon analyte binding. Three bis-porphyrin compounds: a free base (metal free), Ni complex, and Cu complex, have been tested for histidine detection in aqueous media. Histidine is involved in various biological processes, including such deadly disease as lung cancer. The conformational changes of bis-porphyrins, induced by histidine binding, can be detected by monitoring the Soret band position. The spectroscopic characterization, at the air-water subphase interface, indicates that, in the presence of histidine, the Ni and Cu metallated derivatives undergo conformational changes. This behaviour was confirmed when these two derivatives were deposited onto the solid support by Langmuir-Schaefer (LS) technique. A prototypal Surface Plasmon Resonance (SPR) detection system for histidine based on these two porphyrin LS films was developed. The Cu substituted compound based SPR system allows the histidine sensing down to nanomolar concentration. Furthermore, a SPR response of the Ni bis-porphyrin shows a semilogarithmic dependence on the histidine concentration up to 10-6 M proposing the use of these two porphyrins in a sensor array for the monitoring of histidine levels in plasma.


Assuntos
Complexos de Coordenação/química , Cobre/química , Etano/química , Histidina/análise , Níquel/química , Porfirinas/química , Complexos de Coordenação/síntese química , Íons/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA