Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17835, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857714

RESUMO

Surface chemistry plays an important role in the indoor environment owing to the large indoor surface to volume ratio. This study explores the photoreactivity of surfaces painted with a photoactive paint in the presence of NOx. Two types of experiments are performed; illumination of painted surfaces with a nitrate deposit and illumination of painted surfaces in the presence of gaseous NO. For both types of experiments, illumination with a fluorescent bulb causes the greatest change in measured gaseous NOx concentrations. Results show that relative humidity and paint composition play an important role in the photoreactivity of indoor painted surfaces. Painted surfaces could contribute to gas-phase oxidant concentrations indoors.

2.
Environ Sci Technol ; 56(18): 13449-13460, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36054115

RESUMO

Carbon monoxide (CO) is the second most abundant identified product of dissolved organic matter (DOM) photodegradation after CO2, but its formation mechanism remains unknown. Previous work showed that aqueous photodegradation of methoxy-substituted aromatics (ArOCH3) produces CO considerably more efficiently than aromatic carbonyls. Following on this precedent, we propose that the methoxy aromatic groups of lignin act as the C source for the photochemical formation of CO from terrestrial DOM via a two-step pathway: formal hydrolytic demethylation to methanol and methanol oxidation to CO. To test the reasonableness of this mechanism, we investigated the photochemistry of eight lignin model compounds. We first observed that initial CO production rates are positively correlated with initial substrate degradation rates only for models containing at least one ArOCH3 group, regardless of other structural features. We then confirmed that all ArOCH3-containing substrates undergo formal hydrolytic demethylation by detecting methanol and the corresponding phenolic transformation products. Finally, we showed that hydroxyl radicals, likely oxidants to initiate methanol oxidation to CO, form during irradiation of all models. This work proposes an explicit mechanism linking ubiquitous, abundant, and easily quantifiable DOM functionalities to CO photoproduction. Our results further hint that methanol may be an abundant (yet overlooked) DOM photoproduct and a likely precursor of formaldehyde, formic acid, and CO2 and that lignin photodegradation may represent a source of hydroxyl radicals.


Assuntos
Monóxido de Carbono , Lignina , Dióxido de Carbono , Matéria Orgânica Dissolvida , Formaldeído , Metanol , Oxidantes , Processos Fotoquímicos , Fotólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA