Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778762

RESUMO

Nucleosomes constitute the fundamental building blocks of chromatin. They are comprised of DNA wrapped around a histone octamer formed of two copies each of the four core histones H2A, H2B, H3, and H4. Nucleosomal histones undergo a plethora of posttranslational modifications that regulate gene expression and other chromatin-templated processes by altering chromatin structure or by recruiting effector proteins. Given their symmetric arrangement, the sister histones within a nucleosome have commonly been considered to be equivalent and to carry the same modifications. However, it is now clear that nucleosomes can exhibit asymmetry, combining differentially modified sister histones or different variants of the same histone within a single nucleosome. Enabled by the development of novel tools that allow generating asymmetrically modified nucleosomes, recent biochemical and cell-based studies have begun to shed light on the origins and functional consequences of nucleosomal asymmetry. These studies indicate that nucleosomal asymmetry represents a novel regulatory mechanism in the establishment and functional readout of chromatin states. Asymmetry expands the combinatorial space available for setting up complex sets of histone marks at individual nucleosomes, regulating multivalent interactions with histone modifiers and readers. The resulting functional consequences of asymmetry regulate transcription, poising of developmental gene expression by bivalent chromatin, and the mechanisms by which oncohistones deregulate chromatin states in cancer. Here, we review recent progress and current challenges in uncovering the mechanisms and biological functions of nucleosomal asymmetry.

2.
Science ; 375(6586): 1281-1286, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35298257

RESUMO

The tail of replication-dependent histone H3.1 varies from that of replication-independent H3.3 at the amino acid located at position 31 in plants and animals, but no function has been assigned to this residue to demonstrate a unique and conserved role for H3.1 during replication. We found that TONSOKU (TSK/TONSL), which rescues broken replication forks, specifically interacts with H3.1 via recognition of alanine 31 by its tetratricopeptide repeat domain. Our results indicate that genomic instability in the absence of ATXR5/ATXR6-catalyzed histone H3 lysine 27 monomethylation in plants depends on H3.1, TSK, and DNA polymerase theta (Pol θ). This work reveals an H3.1-specific function during replication and a common strategy used in multicellular eukaryotes for regulating post-replicative chromatin maturation and TSK, which relies on histone monomethyltransferases and reading of the H3.1 variant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Reparo do DNA , Replicação do DNA , DNA de Plantas/metabolismo , Histonas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Quebras de DNA de Cadeia Dupla , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Genoma de Planta , Instabilidade Genômica , Histonas/química , Lisina/metabolismo , Metilação , Metiltransferases/genética , Mutação , Domínios e Motivos de Interação entre Proteínas , DNA Polimerase teta
3.
Development ; 147(6)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32108025

RESUMO

Aerial organs of plants, being highly prone to local injuries, require tissue restoration to ensure their survival. However, knowledge of the underlying mechanism is sparse. In this study, we mimicked natural injuries in growing leaves and stems to study the reunion between mechanically disconnected tissues. We show that PLETHORA (PLT) and AINTEGUMENTA (ANT) genes, which encode stem cell-promoting factors, are activated and contribute to vascular regeneration in response to these injuries. PLT proteins bind to and activate the CUC2 promoter. PLT proteins and CUC2 regulate the transcription of the local auxin biosynthesis gene YUC4 in a coherent feed-forward loop, and this process is necessary to drive vascular regeneration. In the absence of this PLT-mediated regeneration response, leaf ground tissue cells can neither acquire the early vascular identity marker ATHB8, nor properly polarise auxin transporters to specify new venation paths. The PLT-CUC2 module is required for vascular regeneration, but is dispensable for midvein formation in leaves. We reveal the mechanisms of vascular regeneration in plants and distinguish between the wound-repair ability of the tissue and its formation during normal development.


Assuntos
Arabidopsis , Redes Reguladoras de Genes/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Feixe Vascular de Plantas/fisiologia , Regeneração/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Desenvolvimento Vegetal/fisiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Feixe Vascular de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transdução de Sinais/genética , Fatores de Transcrição/fisiologia , Cicatrização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA