Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747901

RESUMO

Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.

2.
NanoImpact ; 27: 100410, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35787478

RESUMO

Nanoforms (NFs) of a substance may be distinguished from one another through differences in their physicochemical properties. When registering nanoforms of a substance for assessment under the EU REACH framework, five basic descriptors are required for their identification: composition, surface chemistry, size, specific surface area and shape. To make the risk assessment of similar NFs efficient, a number of grouping frameworks have been proposed, which often require assessment of similarity on individual physicochemical properties as part of the group justification. Similarity assessment requires an understanding of the achievable accuracy of the available methods. It must be demonstrated that measured differences between NFs are greater than the achievable accuracy of the method, to have confidence that the measured differences are indeed real. To estimate the achievable accuracy of a method, we assess the reproducibility of six analytical techniques routinely used to measure these five basic descriptors of nanoforms: inductively coupled plasma mass spectrometry (ICP-MS), Thermogravimetric analysis (TGA), Electrophoretic light scattering (ELS), Brunauer-Emmett-Teller (BET) specific surface area and transmission and scanning electron microscopy (TEM and SEM). Assessment was performed on representative test materials to evaluate the reproducibility of methods on single NFs of substances. The achievable accuracy was defined as the relative standard deviation of reproducibility (RSDR) for each method. Well established methods such as ICP-MS quantification of metal impurities, BET measurements of specific surface area, TEM and SEM for size and shape and ELS for surface potential and isoelectric point, all performed well, with low RSDR, generally between 5 and 20%, with maximal fold differences usually <1.5 fold between laboratories. Applications of technologies such as TGA for measuring water content and putative organic impurities, additives or surface treatments (through loss on ignition), which have a lower technology readiness level, demonstrated poorer reproducibility, but still within 5-fold differences. The expected achievable accuracy of ICP-MS may be estimated for untested analytes using established relationships between concentration and reproducibility, but this is not yet the case for TGA measurements of loss on ignition or water content. The results here demonstrate an approach to estimate the achievable accuracy of a method that should be employed when interpreting differences between NFs on individual physicochemical properties.


Assuntos
Metais , Água , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Reprodutibilidade dos Testes
3.
Water Res ; 222: 118848, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35901554

RESUMO

Since nanoplastics are currently considered potentially hazardous to the environment and human health, reliability of studies on nanoplastic exposure becomes crucial. However, analytical challenges limit our understanding of their formation and detection, thus hampering their biological interactions assessment. Here we provide a combined approach to quantitatively and qualitatively detect the release of nanoplastics in water matrix and, in particular, to measure direct exposure of consumers by simulated use of drinking water plastic bottles. We measured that the polyethylene sealing of the bottles released particles with a size distribution ranging from few hundreds nanometers up to about one micron and estimated a mass release in the order of few tenths of nanograms per opening/closing cycle. We observe that mechanical stress alters the physical-chemical characteristics of the generated secondary nanoplastics and degrades the material properties compared to the original bulk source, thus complicating their spectroscopic chemical identification. Our findings demonstrate that understanding material degradation processes is therefore crucial for identifying and quantifying nanoplastics in real samples. Moreover, methods allowing quantitative studies on the release of nanoplastic as a source of exposure are considered essential for proper assessment of their potential health hazards and to promote improvements in consumer products plastic packaging design.


Assuntos
Água Potável , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise
4.
Molecules ; 27(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35566300

RESUMO

Nowadays, the use of hybrid structures and multi-component materials is gaining ground in the fields of environmental protection, water treatment and removal of organic pollutants. This study describes promising, cheap and photoactive self-supported hybrid membranes as a possible solution for wastewater treatment applications. In the course of this research work, the photocatalytic performance of titania nanowire (TiO2 NW)-based hybrid membranes in the adsorption and degradation of methylene blue (MB) under UV irradiation was investigated. Characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffractometry (XRD) were used to study the morphology and surface of the as-prepared hybrid membranes. We tested the photocatalytic efficiency of the as-prepared membranes in decomposing methylene blue (MB) under UV light irradiation. The hybrid membranes achieved the removal of MB with a degradation efficiency of 90% in 60 min. The high efficiency can be attributed to the presence of binary components in the membrane that enhanced both the adsorption capability and the photocatalytic ability of the membranes. The results obtained suggest that multicomponent hybrid membranes could be promising candidates for future photocatalysis-based water treatment technologies that also take into account the principles of circular economy.


Assuntos
Nanofios , Purificação da Água , Azul de Metileno/química , Titânio/química
5.
Polymers (Basel) ; 14(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335568

RESUMO

Micro- and nanoplastic (pMP and pNP, respectively) release is an emerging issue since these particles constitute a ubiquitous and growing pollutant, which not only threatens the environment but may have potential consequences for human health. In particular, there is concern about the release of secondary pMP and pNP from the degradation of plastic consumer products. The phenomenon is well-documented in relation to plastic waste in the environment but, more recently, reports of pMP generated even during the normal use of plastic food contact materials, such as water bottles, tea bags, and containers, have been published. So far, a validated and harmonized strategy to tackle the issue is not available. In this study, we demonstrate that plastic breakdown to pMP and pNP can occur during the normal use of polyethylene (PE) rice cooking bags and ice-cube bags as well as of nylon teabags. A multi-instrumental approach based on Raman microscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and particular attention on the importance of sample preparation were applied to evaluate the chemical nature of the released material and their morphology. In addition, a simple method based on Fourier transform infrared (FT-IR) spectroscopy is proposed for pNP mass quantification, resulting in the release of 1.13 ± 0.07 mg of nylon 6 from each teabag. However, temperature was shown to have a strong impact on the morphology and aggregation status of the released materials, posing to scientists and legislators a challenging question: are they micro- or nanoplastics or something else altogether?

6.
Environ Sci Pollut Res Int ; 29(7): 10535-10546, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34528196

RESUMO

Wastewater treatment plants (WWTPs) efficiently retain microplastic particles (MPs) generated within urban areas. Among the wastewater treatment steps, disinfection has not been characterized for its potential MPs retention activity, although it has been reported that processes used to abate the bacterial load could also affect MPs concentration. For this reason, we evaluated the MPs concentration across the overall wastewater treatment process and before and after the disinfection step in four small/medium WWTPs located in the north of Italy. Most of the MPs found in the samples were fibers or fragments, smaller than 500 µm, mainly composed of polyethylene, polypropylene, or polyethylene terephthalate. The retention efficiency at the outlets was higher than 94% in all the plants analyzed. More interestingly, the disinfection treatments adopted by the different WWTPs reduced MPs concentration from a minimum of 9.1% (UV treatment) to a maximum of 67.6% (chlorination), promoting a further increase of the overall retention efficiency of the WWTPs from 0.4 to 0.7%. Quantitatively, the disinfection contributes to the MPs reduction in the outlets by retaining 0.5-6.7 million MPs per day, in WWTPs that discharge 2.7-12 million MPs per day. The results of the present work underline the importance of a careful choice of the steps that constitute the wastewater treatment, including disinfection, in order to minimize MPs discharge into the natural ecosystems.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção , Ecossistema , Monitoramento Ambiental , Microplásticos , Plásticos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
7.
Biosensors (Basel) ; 11(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062907

RESUMO

The development of sensitive methods for the determination of potential bacterial contamination is of upmost importance for environmental monitoring and food safety. In this study, we present a new method combining a fast pre-enrichment step using a microporous cryogel and a detection and identification step using antimicrobial peptides (AMPs) and labelled antibodies, respectively. The experimental method consists of: (i) the capture of large amounts of bacteria from liquid samples by using a highly porous and functionalized cryogel; (ii) the detection and categorisation of Gram-positive and Gram-negative bacteria by determining their affinities toward a small set of AMPs; and (iii) the identification of the bacterial strain by using labelled detection antibodies. As proof of concept, the assessment of the three steps of the analysis was performed by using Escherichia coli and Bacillus sp. as models for Gram-negative and Gram-positive bacteria, respectively. The use of AMPs with broad specificity combined with labelled antibodies enabled the detection and potential categorization of a large spectrum of unknown or unexpected bacteria.


Assuntos
Bactérias/isolamento & purificação , Microbiologia da Água , Bacillus , Monitoramento Ambiental , Escherichia coli , Inocuidade dos Alimentos
8.
ACS Appl Mater Interfaces ; 13(13): 15847-15856, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33759495

RESUMO

The present paper assesses the heterogeneous nucleation of a small-molecule drug and its relationship with the surface chemistry of engineered heteronucleants. The nucleation of aspirin (ASA) was tuned by different functional groups exposed by self-assembled monolayers (SAMs) immobilized on glass surfaces. Smooth topographies and defect-free surface modification allowed the deconvolution of chemical and topographical effects on nucleation. The nucleation induction time of ASA in batch crystallization was mostly enhanced by methacrylate and amino groups, whereas it was repressed by thiol groups. In this perspective, we also present a novel strategy for the evaluation of surface-drug interactions by confining drug crystallization to thin films and studying the preferential growth of crystal planes on different surfaces. Crystallization by spin coating improved the study of oriented crystallization, enabling reproducible sample preparation, minimal amounts of drug required, and short processing time. Overall, the acid surface tension of SAMs dictated the nucleation kinetics and the extent of relative growth of the ASA crystal planes. Moreover, the face-selective action of monolayers was investigated by force spectroscopy and attributed to the preferential interaction of exposed groups with the (100) crystal plane of ASA.


Assuntos
Anti-Inflamatórios não Esteroides/química , Aspirina/química , Cristalização/métodos , Vidro/química , Cinética , Propriedades de Superfície
9.
Sci Rep ; 11(1): 362, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432047

RESUMO

Nanoplastic particulates (pNP) are widely considered as being potentially harmful to the environment and living organisms while also being technically difficult to detect and identify in the presence of biological matrices. In this study, we describe a method for the extraction and subsequent Raman analysis of pNP present in the tissues of salt-water mussels. The process combines a step of enzymatic digestion/filtering to eliminate the biological matrix with a detection/identification procedure, which uses a micro-machined surface, composed of arrays of cavities with well-defined sub-micron depths and diameters. This sensor surface, exploits capillary forces in a drying droplet of analyte solution to drive the self-assembly of suspended nanoparticles into the cavities leaving the individual particles isolated from each other over the surface. The resulting array, when analysed using confocal Raman microscopy, permits the size selective analysis of the individual sub-micron pNP trapped in the cavities structure.

10.
Sensors (Basel) ; 19(21)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717745

RESUMO

Development of sensitive methods for the determination of E. coli bacteria contamination in water distribution systems is of paramount importance to ensure the microbial safety of drinking water. This work presents a new sensing platform enabling the fast detection of bacteria in field samples by using specific antibodies as the biorecognition element and dark field microscopy as the detection technique. The development of the sensing platform was performed using non-pathogenic bacteria, with the E. coli DH5α strain as the target, and Bacillus sp. 9727 as the negative control. The identification of the captured bacteria was made by analyzing the dark field microscopy images and screening the detected objects by using object circularity and size parameters. Specificity tests revealed the low unspecific attachment of either E. coli over human serum albumin antibodies (negative control for antibody specificity) and of Bacillus sp. over E. coli antibodies. The system performance was tested using field samples, collected from a wastewater treatment plant, and compared with two quantification techniques (i.e., Colilert-18 test and quantitative polymerase chain reaction (qPCR)). The results showed comparable quantification capability. Nevertheless, the present method has the advantage of being faster, is easily adaptable to in-field analysis, and can potentially be extended to the detection of other bacterial strains.


Assuntos
Escherichia coli , Microscopia/instrumentação , Águas Residuárias/microbiologia , Microbiologia da Água , Bacillus/imunologia , Calibragem , Células Imobilizadas/metabolismo , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/isolamento & purificação , Microscopia/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície
11.
Front Chem ; 6: 534, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425984

RESUMO

The World Health Organization reports that every year several million people die prematurely due to air pollution. Poor air quality is a by-product of unsustainable policies in transportation, energy, industry, and waste management in the world's most crowded cities. Particulate matter (PM) is one of the major element of polluted air. PM can be composed by organic and inorganic species. In particular, heavy metals present in PM include, lead (Pb), mercury (Hg), cadmium, (Cd), zinc (Zn), nickel (Ni), arsenic (As), and molybdenum (Mo). Currently, vegetation is the only existing sustainable method to reduce anthropogenic PM concentrations in urban environments. In particular, the PM-retention ability of vegetation depends on the surface properties, related to the plant species, leaf and branch density, and leaf micromorphology. In this work, a new hybrid material called SUNSPACE (SUstaiNable materials Synthesized from by-Products and Alginates for Clean air and better Environment) is proposed for air PM entrapment. Candle burning tests are performed to compare SUNSPACE with Hedera Helix L. leafs with respect to their efficacy of reducing coarse and fine PM. The temporal variation of PM10 and PM2.5 in presence of the trapping materials, shows that Hedera Helix L. surface saturates more rapidly. In addition, the capability of SUNSPACE in ultrafine PM trapping is also demonstrated by using titanium dioxide nanoparticles with 25 nm diameter. Scanning electron microscope (SEM) and Transmission electron microscope (TEM) images of SUNSPACE after entrapment tests highlight the presence of collected nanoparticles until to about 0.04 mm in depth from the sample surface. N2 physisorption measurements allow to demonstrate the possibility to SUNSPACE regeneration by washing.

12.
J Nanopart Res ; 19(3): 117, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28367070

RESUMO

Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors. Graphical abstractDetermination of hydrophobicity character of nanomaterials by measuring their affinity to engineered surfaces.

13.
Chempluschem ; 82(3): 352-357, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31962022

RESUMO

Surfaces with high water-adhesion properties are promising materials for different applications in the field of water treatment and management, such as for water-harvesting systems or oil/water separation membranes. Herein, we developed rose-petal-like substrates that demonstrate interesting parahydrophobic character. This bioinspired material mimics the natural substrate thanks to a combination of two fabrication steps: (1) micropatterning to create a microstructured gold-coated substrate consisting of square pillars and (2) an electropolymerization process generating nanostructures over the micropillars. Judicious choice of the micropatterning specifications (pillar diameter and pitch), the type of electropolymerizable monomer, and the electrochemical parameters produces a material with both extremely high water contact angles (up to 160°), while retaining a remarkably high water-adhesion level. Our study suggests that a composite interface is expressed by the existence of the Wenzel state on the micropillars and the Cassie-Baxter state between the pillars ("Cassie-filled nanostructure"), as observed during our contact-angle measurements. Indeed, we show that the pitch should be small to obtain the optimal micropillar surface density. Moreover, a relatively low deposition charge of approximately 50 mC cm-2 is preferable for coating the square pillars exclusively with nanostructures.

14.
Chempluschem ; 82(3): 336, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31962035

RESUMO

Invited for this month's cover are the collaborating groups of Dr. Thierry Darmanin at Université Côte d'Azur, France and Dr. François Rossi at JRC European Commission, Italy. The cover picture shows a novel strategy for preparing substrates having a rose-petal effect (high water adhesion). The micropatterning specifications (pillar diameter and pitch) and the electropolymerization parameters are key to obtaining both high water apparent contact angles and a high hysteresis. Read the full text of the article at 10.1002/cplu.201600387.

16.
Part Fibre Toxicol ; 13(1): 47, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27557953

RESUMO

BACKGROUND: The constant increase of the use of nanomaterials in consumer products is making increasingly urgent that standardized and reliable in vitro test methods for toxicity screening be made available to the scientific community. For this purpose, the determination of the cellular dose, i.e. the amount of nanomaterials effectively in contact with the cells is fundamental for a trustworthy determination of nanomaterial dose responses. This has often been overlooked in the literature making it difficult to undertake a comparison of datasets from different studies. Characterization of the mechanisms involved in nanomaterial transport and the determination of the cellular dose is essential for the development of predictive numerical models and reliable in vitro screening methods. RESULTS: This work aims to relate key physico-chemical properties of gold nanoparticles (NPs) to the kinetics of their deposition on the cellular monolayer. Firstly, an extensive characterization of NPs in complete culture cell medium was performed to determine the diameter and the apparent mass density of the formed NP-serum protein complexes. Subsequently, the kinetics of deposition were studied by UV-vis absorbance measurements in the presence or absence of cells. The fraction of NPs deposited on the cellular layer was found to be highly dependent on NP size and apparent density because these two parameters influence the NP transport. The NP deposition occurred in two phases: phase 1, which consists of cellular uptake driven by the NP-cell affinity, and phase 2 consisting mainly of NP deposition onto the cellular membrane. CONCLUSION: The fraction of deposited NPs is very different from the initial concentration applied in the in vitro assay, and is highly dependent of the size and density of the NPs, on the associated transport rate and on the exposure duration. This study shows that an accurate characterization is needed and suitable experimental conditions such as initial concentration of NPs and liquid height in the wells has to be considered since they strongly influence the cellular dose and the nature of interactions of NPs with the cells.


Assuntos
Nanopartículas/toxicidade , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Espectrofotometria Ultravioleta
17.
ACS Biomater Sci Eng ; 2(11): 1976-1982, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33440533

RESUMO

Amorphous carbon films exhibit attractive optical and surface properties. In this work, modified amorphous carbon films incorporating nitroxide groups (α-CNO) have been obtained by searching for a condensed analogue to classical soft antifouling materials. Thin films deposited by reactive magnetron sputtering in air discharges at varying power conditions were characterized by ellipsometry, atomic force microscopy, and water contact angle. Plasma power was observed to activate the densification and roughness of nanograined films. Most hydrophilic films deposited at 30 W exhibited the lowest refractive index, negligible optical absorption in the vis-IR, and presented a close to stoichiometric C2NO composition, as derived from X-ray photoelectron spectroscopy. Micropatterns prepared by photolithography validated the transparency-hydrophilicity of the α-CNO, as observed by water condensation contrast imaging. An albumin adsorption experiment evaluated through fluorescence revealed that α-CNO behaves as antifouling with respect to Si. Such thin antifouling films are of interest for the initiation of immobilization cascades in imaging surface plasmon resonance, where they have confirmed their antifouling contrast enhancement role. These results illustrate that the combination of a nanorough surface with nitroxide chemistry induces an antifouling behavior. In association with the optical transparency, the results invite the exploration of the bioengineering dimension of α-CNO films.

18.
PLoS One ; 10(10): e0141593, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26517371

RESUMO

Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays.


Assuntos
Meios de Cultura/química , Nanopartículas/química , Dióxido de Silício/farmacocinética , Células CACO-2 , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Humanos , Tamanho da Partícula , Dióxido de Silício/química , Propriedades de Superfície
19.
Beilstein J Nanotechnol ; 6: 500-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821692

RESUMO

Biosensing technologies based on plasmonic nanostructures have recently attracted significant attention due to their small dimensions, low-cost and high sensitivity but are often limited in terms of affinity, selectivity and stability. Consequently, several methods have been employed to functionalize plasmonic surfaces used for detection in order to increase their stability. Herein, a plasmonic surface was modified through a controlled, silica platform, which enables the improvement of the plasmonic-based sensor functionality. The key processing parameters that allow for the fine-tuning of the silica layer thickness on the plasmonic structure were studied. Control of the silica coating thickness was achieved through a combined approach involving sol-gel and dip-coating techniques. The silica films were characterized using spectroscopic ellipsometry, contact angle measurements, atomic force microscopy and dispersive spectroscopy. The effect of the use of silica layers on the optical properties of the plasmonic structures was evaluated. The obtained results show that the silica coating enables surface protection of the plasmonic structures, preserving their stability for an extended time and inducing a suitable reduction of the regeneration time of the chip.

20.
ACS Nano ; 8(10): 10496-506, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25280123

RESUMO

In our study, 2D nanopillar arrays with plasmonic crystal properties are optimized for surface-enhanced Raman spectroscopy (SERS) application and tested in a biochemical assay for the simultaneous detection of multiple genetic leukemia biomarkers. The special fabrication process combining soft lithography and plasma deposition techniques allows tailoring of the structural and chemical parameters of the crystal surfaces. In this way, it has been possible to tune the plasmonic resonance spectral position close to the excitation wavelength of the monochromatic laser light source in order to maximize the enhancing properties of the substrate. Samples are characterized by scanning electron microscopy and reflectance measurements and tested for SERS activity using malachite green. Besides, as the developed substrate had been prepared on a simple glass slide, SERS detection from the support side is also demonstrated. The optimized substrate is functionalized with thiol-modified capture oligonucleotides, and concentration-dependent signal of the target nucleotide is detected in a sandwich assay with labeled gold nanoparticles. Gold nanoparticles functionalized with different DNA and various Raman reporters are applied in a microarray-based assay recognizing a disease biomarker (Wilms tumor gene) and housekeeping gene expressions in the same time on spatially separated microspots. The multiplexing performance of the SERS-based bioassay is illustrated by distinguishing Raman dyes based on their complex spectral fingerprints.


Assuntos
Ouro/química , Nanopartículas/química , Polímeros/química , Análise Espectral Raman/métodos , Biomarcadores Tumorais/metabolismo , Leucemia/genética , Leucemia/metabolismo , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA