Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Biomater Adv ; 157: 213737, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211506

RESUMO

Graphitic carbon nitride (g-C3N4) is explored as a novel sustainable visible light photoinitiator for the preparation of biomimetic 3D hydrogel scaffolds comprising gelatin methacrylamide (GelMA) and dopamine methacrylamide for use in tissue engineering. The initiator efficiency was assessed by comparing the swelling behavior and the stability of photopolymerized hydrogels prepared with GelMA of different degrees of functionalization and different comonomer compositions. Bioactive composite hydrogels with a 50 wt% nanohydroxyapatite (nHAp) content, to closely mimic the actual bone composition, were successfully obtained by the introduction of nHAp in the prepolymer solutions followed by photopolymerization. The composite hydrogels demonstrated enhanced mechanical properties and excellent stability in PBS verifying the preparation of robust 3D scaffolds for use in cancellous or pre-calcified bone tissue engineering applications. The in vitro cell response of the composite scaffolds exhibited high cell viability and enhanced differentiation of pre-osteoblasts to mature osteoblasts, demonstrating their osteogenic potential. This work establishes, for the first time, the excellent properties of g-C3N4 as a sustainable, visible light initiator, fully satisfying the principles of green chemistry, for the preparation of robust and biologically relevant hydrogels, and proposes a new approach to overcome the main challenges of conventional photoinitiators in cell scaffold fabrication, such as photobleaching, high cost and non-scalable synthesis employing toxic organic precursors and solvents.


Assuntos
Acrilamidas , Biomimética , Grafite , Compostos de Nitrogênio , Pirenos , Engenharia Tecidual , Luz , Hidrogéis
3.
Polymers (Basel) ; 15(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36850269

RESUMO

There is a growing concern about wound care, since traditional dressings such as bandages and sutures can no longer meet existing needs. To address the demanding requirements, naturally occurring polymers have been extensively exploited for use in modern wound management. Polysaccharides, being the most abundant biopolymers, have some distinct characteristics, including biocompatibility and biodegradability, which render them ideal candidates for wound healing applications. Combining them with inorganic and organic moieties can produce effective multifunctional composites with the desired mechanical properties, high wound healing efficiencies and excellent antibacterial behavior. Recent research endeavors focus on the development of stimuli-responsive polysaccharide composites for biomedical applications. Polysaccharide composites, being sensitive to the local environment, such as changes of the solution temperature, pH, etc., can sense and react to the wound conditions, thus promoting an effective interaction with the wound. This review highlights the recent advances in stimuli-responsive polysaccharide hydrogels and their composites for use in wound healing applications. The synthetic approaches, physical, chemical, and biochemical properties as well as their function in wound healing will be discussed.

4.
Macromol Biosci ; 23(1): e2200301, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189866

RESUMO

Surfaces for guided cell adhesion and growth are indispensable in several diagnostic and therapeutic applications. Towards this direction, four diblock copolymers comprising polyethylene glycol (PEG) and poly(2-tetrahydropyranyl methacrylate) (PTHPMA) are synthesized employing PEG macroinitiators of different chain lengths. The copolymer with a 5000 Da PEG block and a PEG-PTHPMA comonomers weight ratio of 43-57 provides a film with the highest stability in the culture medium and the strongest cell repellent properties. This copolymer is used to develop a positive photolithographic material and create stripe patterns onto silicon substrates. The highest selectivity regarding smooth muscle cell adhesion and growth and the highest fidelity of adhered cells for up to 3 days in culture is achieved for stripe patterns with widths between 25 and 27.5 µm. Smooth muscle cells cultured on such patterned substrates exhibit a decrease in their proliferation rate and nucleus area and an increase in their major axis length, compared to the cells cultured onto non-patterned substrates. These alterations are indicative of the adoption of a contractile rather than a synthetic phenotype of the smooth muscle cells grown onto the patterned substrates and demonstrate the potential of the novel photolithographic material and patterning method for guided cell adhesion and growth.


Assuntos
Polietilenoglicóis , Polímeros , Polietilenoglicóis/química , Adesão Celular/fisiologia , Polímeros/farmacologia , Polímeros/química
5.
Langmuir ; 38(45): 13674-13685, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36263911

RESUMO

Temperature-sensitive rod-like colloidal particles were synthesized by grafting a temperature-responsive polymer, poly(2-(dimethylamino)ethyl methacrylate) (PDMA), on the surface of high aspect ratio silica rods by surface-initiated atom transfer radical polymerization. The stability of the grafted polymer on the surface of the particles in aqueous solutions was found to deteriorate with time, leading to a gradual decrease of the polymer content of the hybrid colloids, which was attributed to the mechanically activated hydrolysis of the labile bonds at the polymer-silica interface. The polymer degrafting was significantly suppressed by first growing a hydrophobic poly(methyl methacrylate) block onto the particle surface to act as a barrier layer for the penetration of water molecules at the polymer-particle interface, followed by chain-extension with the hydrophilic PDMA chains. Dynamic light scattering, microscopy, and rheological measurements revealed that the PDMA block conferred a temperature-responsive behavior to the rod-like particles, which formed aggregates at temperatures above the lower critical solution temperature (LCST) of the polymer. However, in contrast to their spherical counterparts, the polymer-grafted rod-like particles did not exhibit complete thermo-reversibility upon lowering the solution temperature below the LCST of PDMA, which was reflected by different values of the diffusion coefficient for the heating and cooling cycles, indicating an irreversible rod particle aggregation upon increasing the temperature.

7.
Polymers (Basel) ; 13(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34577950

RESUMO

In this work, the antimicrobial action of partially quaternized poly(2-(dimethylamino)ethyl methacrylate) (PQDMAEMA) copolymers using different alkyl halides is presented. The poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) homopolymer was synthesized by group transfer polymerization, followed by the modification of its tertiary amine groups, using bromoethane, iodoethane, bromohexane and bromoethanol, to introduce permanent cationic, quaternary ammonium salt moieties, randomly distributed along the polymer chains. In all cases, the degree of quaternization was low, at ~10 mol%, as verified by proton nuclear magnetic resonance spectroscopy to preserve the thermo-responsive character of the PDMAEMA precursor polymer. The biocidal activity of the lightly quaternized PQDMAEMA copolymers against Escherichia coli and Staphylococcus aureus was evaluated by calculating the minimum inhibitory concentration (MIC) as well as the minimum bactericidal concentration (MBC) of the polymers and by comparing them to the respective values of the precursor non-quaternized PDMAEMA homopolymer. The antibacterial mechanism of action in the solution was studied by zeta potential measurements, scanning electron microscopy and protein leakage tests signifying the disruption of the outer membrane of the bacterial cells to release their periplasmic proteins.

8.
Polymers (Basel) ; 13(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34372064

RESUMO

Light-mediated polymer degradation has attracted considerable attention in various applications, including photo-patterning, tissue engineering and photo-triggered drug delivery. In this study, we report the synthesis and characterization of a new, linear, main-chain photo- and acid-degradable copolymer based on acylhydrazone linkages. The polymer was synthesized via a step-growth copolymerization of adipic acid dihydrazide with a bifunctional poly(ethylene glycol) bearing benzaldehyde end-groups, under mild acidic conditions, to afford a hydrophilic PEG-alt-adipic acid (PEG-alt-AA) alternating copolymer. The synthesized polymer was characterized by size exclusion chromatography, proton nuclear magnetic resonance and attenuated total reflection-Fourier transform infrared spectroscopies. The main-chain photo- and acid-induced degradation of the copolymer in dimethylsulfoxide and water, respectively, was verified by UV-vis spectroscopy at light intensities as low as 0.1 mW cm-2 at λ = 254 nm. Next, a model anticancer drug, doxorubicin (DOX), was chemically linked to the polymer chain end(s) via acylhydrazone bond(s), resulting in amphiphilic PEG-alt-adipic acid-DOX (PEG-alt-AA-DOX) polymer-drug conjugates. The conjugates were self-assembled in water to form spherical nanoparticles, as evidenced by scanning and transmission electron microscopies. The irradiation of the self-assembled PEG-alt-AA-DOX conjugates with UV light and the decrease of the solution pH resulted in the disruption of the assemblies due to the photolysis and acidolysis of the acylhydrazone bonds, and the release of the therapeutic cargo.

9.
Polymers (Basel) ; 13(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070123

RESUMO

Main chain polyesters have been extensively used in the biomedical field. Despite their many advantages, including biocompatibility, biodegradability, and others, these materials are rather inert and lack specific functionalities which will endow them with additional biological and responsive properties. In this work, novel pH-responsive main chain polyesters have been prepared by a conventional condensation polymerization of a vinyl functionalized diol with a diacid chloride, followed by a photo-induced thiol-ene click reaction to attach functional carboxylic acid side-groups along the polymer chains. Two different mercaptocarboxylic acids were employed, allowing to vary the alkyl chain length of the polymer pendant groups. Moreover, the degree of modification, and as a result, the carboxylic acid content of the polymers, was easily tuned by varying the irradiation time during the click reaction. Both these parameters, were shown to strongly influence the responsive behavior of the polyesters, which presented adjustable pKα values and water solubilities. Finally, the difunctional polyesters bearing the alkene and carboxylic acid functionalities enabled the preparation of cross-linked polyester films by chemically linking the pendant vinyl bonds on the polymer side groups. The biocompatibility of the cross-linked polymers films was assessed in L929 fibroblast cultures and showed that the cell viability, proliferation, and attachment were greatly promoted on the polyester surface, bearing the shorter alkyl chain length side groups and the higher fraction of carboxylic acid functionalities.

10.
ACS Appl Mater Interfaces ; 13(15): 17183-17195, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33734694

RESUMO

Hybrid, organic-inorganic, biocidal films exhibiting polishing properties were developed as effective long-lasting antimicrobial surface coatings. The films were prepared using cationically modified chitosan, synthesized by the reaction with 3-bromo-N,N,N-trimethylpropan-1-aminium bromide, to introduce permanent biocidal quaternary ammonium salt (QAS) groups along the polymer backbone and were cross-linked by a novel, pH-cleavable acetal cross-linker, which allowed polishing the hybrid coatings with the solution pH. TiO2 nanoparticles, modified with reduced graphene oxide (rGO) sheets, to narrow their band gap energy value and shift their photocatalytic activity in the visible light regime, were introduced within the polymer film to enhance its antibacterial activity. The hybrid coatings exhibited an effective biocidal activity in the dark (∼2 Log and ∼3 Log reduction for Gram-negative and Gram-positive bacteria, respectively), when only the QAS sites interacted with the bacteria membrane, and an excellent biocidal action upon visible-light irradiation (∼5 Log and ∼6 Log reduction for Gram-negative and Gram-positive bacteria, respectively) due to the synergistic antimicrobial effect of the QAS moieties and the rGO-modified TiO2 nanoparticles. The gradual decrease in the film thickness, upon immersion of the coatings in mildly basic (pH 8), neutral (pH 7), and acidic (pH 6) media, reaching 10, 20, and 70% reduction, respectively, after 60 days of immersion time, confirmed the polishing behavior of the films, whereas their effective antimicrobial action was retained. The biocompatibility of the hybrid films was verified in human cell culture studies. The proposed approach enables the facile development of highly functional coatings, combining biocompatibility and bactericidal action with a "kill and self-clean" mechanism that allows the regeneration of the outer surface of the coating leading to a strong and prolonged antimicrobial action.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Luz , Catálise , Linhagem Celular , Quitosana/química , Grafite/química , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Nanopartículas/química , Processos Fotoquímicos , Titânio/química
11.
Soft Matter ; 17(5): 1232-1245, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33300930

RESUMO

A combination of rheology, optical microscopy and computer simulations was used to investigate the microstructural changes of a semi-dilute suspension of attractive rigid rods in an imposed shear flow. The aim is to understand the relation of the microstructure with the viscoelastic response, and the yielding and flow behaviour in different shear regimes of gels built from rodlike colloids. A semi-dilute suspension of micron sized, rodlike silica particles suspended in 11 M CsCl salt solution was used as a model system for attractive rods' gel. Upon application of steady shear the gel microstructure rearranges in different states and exhibits flow instabilities depending on shear rate, attraction strength, volume fraction and geometrical confinement. At low rod volume fractions, the suspension forms large, vorticity aligned, particle rich flocs that roll in the flow-vorticity plane, an effect that is due to an interplay between hydrodynamic interactions and geometrical confinement as suggested by computer simulations. Experimental data allow the creation of a state diagram, as a function of volume fraction and shear rates, identifying regimes of stable (or unstable) floc formation and of homogeneous gel or broken clusters. The transition is related to dimensionless Mason number, defined as the ratio of shear forces to interparticle attractive force.

12.
Materials (Basel) ; 13(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114722

RESUMO

The incorporation of graphene nanoplatelets (GnPs) within a polymer matrix can play an important role in the physical properties and the functionality of the composite material. Composites consisting of low-density polyethylene (LDPE) and GnPs of different concentrations were developed by mixing GnPs with a molten form of the polymeric matrix. The effect of the GnPs content on the morphological, structural, and electrical properties of the composites were investigated. As shown, graphene presence and its concentration significantly modified the polymer matrix properties, a behavior that can be employed for tailoring its applicability in electrical applications. It was found that the increase of the graphene platelets concentration seems to promote the formation of graphene agglomerates, air gaps, and inhomogeneities, while higher dielectric constant/lower dielectric losses can be achieved.

13.
Langmuir ; 36(13): 3482-3493, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32168453

RESUMO

Quaternized poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes bearing quaternary ammonium groups of different alkyl chain lengths (ACLs) were prepared and assessed as biocidal coatings. For the synthesis of the antimicrobial brushes, first well-defined PDMAEMA chains were grown by surface-initiated atom transfer radical polymerization on glass and silicon substrates. Next, the tertiary amine groups of the polymer brushes were modified via a quaternization reaction, using alkyl halides, to obtain the cationic polymers. The polymer films were characterized by Fourier-transform infrared spectroscopy, ellipsometry, atomic force microscopy, and water contact angle measurements. The effect of the ACL of the quaternary ammonium groups on the physicochemical properties of the films as well as the contact killing efficiency of the surfaces against representative Gram-positive and Gram-negative bacteria was investigated. A hydrophilic to hydrophobic transition of the surfaces and a significant decrease of the degree of quaternization of the DMAEMA moieties was found upon increasing the ACL of the quaternization agent above six carbon atoms, allowing the wettability, the thickness, and the pH-response of the brushes to be tuned via a facile postpolymerization, quaternization reaction. At the same time, antimicrobial tests revealed that the hydrophilic polymer brushes exhibited enhanced bactericidal activity against Escherichia coli and Bacillus cereus, whereas the hydrophobic surfaces showed a significant deterioration of the in vitro bactericidal performance. Our results elucidate the antimicrobial action of quaternized polymer brushes, dictating the appropriate choice of the ACL of the quaternization agent for the development of coatings that effectively inhibit biofilm formation on surfaces.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Metacrilatos , Nylons , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Propriedades de Superfície
14.
Polymers (Basel) ; 12(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033024

RESUMO

The design and synthesis of new biomaterials with adjustable physicochemical and biological properties for tissue engineering applications have attracted great interest. In this work, chitosan-graft-poly(l-lactide) (CS-g-PLLA) copolymers were prepared by chemically binding poly(l-lactide) (PLLA) chains along chitosan (CS) via the "grafting to" approach to obtain hybrid biomaterials that present enhanced mechanical stability, due to the presence of PLLA, and high bioactivity, conferred by CS. Two graft copolymers were prepared, CS-g-PLLA(80/20) and CS-g-PLLA(50/50), containing 82 wt % and 55 wt % CS, respectively. Degradation studies of compressed discs of the copolymers showed that the degradation rate increased with the CS content of the copolymer. Nanomechanical studies in the dry state indicated that the copolymer with the higher CS content had larger Young modulus, reduced modulus and hardness values, whereas the moduli and hardness decreased rapidly following immersion of the copolymer discs in alpha-MEM cell culture medium for 24 h. Finally, the bioactivity of the hybrid copolymers was evaluated in the adhesion and growth of MC3T3-E1 pre-osteoblastic cells. In vitro studies showed that MC3T3-E1 cells exhibited strong adhesion on both CS-g-PLLA graft copolymer films from the first day in cell culture, whereas the copolymer with the higher PLLA content, CS-g-PLLA(50/50), supported higher cell growth.

15.
Soft Matter ; 16(3): 833-841, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31840712

RESUMO

Polymer microrods of aspect ratio ∼10, and tunable flexibility are attractive model systems to study density and index matched liquid crystalline phases. However, the synthesis of anisotropic polymer particles is arduous, due to the lack of directional polymer growth mechanisms. In this work, non-cross-linked, hollow polymer microrods are developed from a dense block copolymer brush grown from the surface of micron-sized silica rods. The copolymer brush, comprising a hydrophobic inner block and a hydrophilic outer layer, is synthesized by surface-initiated atom transfer radical polymerization, and is exploited in the preparation of robust polymer rod particles in water, following etching of the inorganic core. The solvent-incompatible inner block is crucial for the synthesis of the rod-like polymer particles, in the absence of chemical cross-links, and the block copolymer composition affects the colloidal stability and flexibility of the hollow anisotropic colloids. For shorter hydrophobic block lengths, well-defined, yet flexible, hollow rods are obtained, whereas increasing the hydrophobic content of the copolymer results in rigid, tube-like particles. The approach is generic and could be easily employed to obtain polymer rod particles in any solvent medium, upon the appropriate selection of the solvent-incompatible inner block and the solvent-compatible outer block.

16.
Materials (Basel) ; 12(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621234

RESUMO

Tissue regeneration necessitates the development of appropriate scaffolds that facilitate cell growth and tissue development by providing a suitable substrate for cell attachment, proliferation, and differentiation. The optimized scaffolds should be biocompatible, biodegradable, and exhibit proper mechanical behavior. In the present study, the nanomechanical behavior of a chitosan-graft-poly(ε-caprolactone) copolymer, in hydrated and dry state, was investigated and compared to those of the individual homopolymers, chitosan (CS) and poly(ε-caprolactone) (PCL). Hardness and elastic modulus values were calculated, and the time-dependent behavior of the samples was studied. Submersion of PCL and the graft copolymer in α-MEM suggested the deterioration of the measured mechanical properties as a result of the samples' degradation. However, even after three days of degradation, the graft copolymer presented sufficient mechanical strength and elastic properties, which resemble those reported for soft tissues. The in vitro biological evaluation of the material clearly demonstrated that the CS-g-PCL copolymer supports the growth of Wharton's jelly mesenchymal stem cells and tissue formation with a simultaneous material degradation. Both the mechanical and biological data render the CS-g-PCL copolymer appropriate as a scaffold in a cell-laden construct for soft tissue engineering.

17.
ACS Biomater Sci Eng ; 5(11): 6161-6170, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405524

RESUMO

Multiphoton lithography, based on multiphoton polymerization, is a powerful technique for the fabrication of complex three-dimensional (3D) structures. Herein, we report on the photostructuring of novel biopolymer-based hybrid hydrogels, comprising gelatin methacrylamide and a water-soluble chitosan derivative, via multiphoton polymerization. The nontoxic, Food and Drug Administration-approved, biocompatible photosensitizer eosin Y was exploited as the sole photoinitiator, without the coinitiators and/or comonomer that are commonly used, allowing for further expansion of the available wavelengths up to 800 nm. Importantly, the obtained hybrid material exhibits excellent biocompatibility, evidenced by the increased proliferation of dental pulp stem cells, compared with the individual components and the polystyrene control, after 7 days in culture. Additionally, the 3D hybrid scaffolds promote the matrix mineralization, following their functionalization with bone morphogenetic protein 2. These tailor-made synthetic, biocompatible materials pave the way for further opportunities in 3D scaffold fabrication, including in situ and in vivo biofabrication.

18.
Nanoscale Adv ; 1(9): 3413-3423, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36133530

RESUMO

The development of dynamically responsive 3D photonic elements, which is crucial for the design of active integrated photonic circuits, requires the incorporation of material systems with fast and tunable response. To this end, semiconductor quantum dots have been widely used to perform as the active material system to be integrated; nonetheless, multiple-step processing is usually required for the active functions to be preserved, thereby restricting functionality of integrated 3D quantum photonic elements mostly to the infrared. Here, we report a simple scheme for the realization of visible light active 3D photonic devices by combining direct laser writing with two-photon absorption and in situ synthesis of cadmium sulfide (CdS) nanoparticles. The novel active 3D printable hybrid material is synthesized by crosslinking precursors of CdS quantum dots into a photo-structurable organic-inorganic zirconium-silicon hybrid composite integrating functional properties of both high spatial resolution and high third-order nonlinearity into the photonic matrix. As a proof-of-demonstration for 3D printed active photonic devices, woodpile photonic crystals with an inlayer periodicity down to 500 nm are successfully fabricated showing clear photonic stop bands in the visible spectral region, while for the first time, evidence of an ultrafast dynamic response in the visible is also demonstrated.

19.
Langmuir ; 34(31): 9122-9132, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30021443

RESUMO

ZnO-TiO2 core-shell photocatalysts of a complex flower-like architecture were synthesized, using a well-controlled sol-gel coating reaction of presynthesized ZnO flower-like structures. The samples were characterized by X-ray diffraction, field emission scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, diffuse reflectance UV-vis and attenuated total reflectance-Fourier transform infrared spectroscopy, nitrogen adsorption-desorption measurements, and photoluminescence measurements. Well-defined, core-shell flowers with a wurtzite ZnO core and anatase TiO2 shells, with variable shell thickness, were acquired by appropriately adjusting the ZnO/Ti precursor mass feed ratio in the reaction. Moreover, hollow TiO2 flowers were obtained, and they retained their morphology following the etching of the ZnO core in an acidic solution. The photocatalytic performance of the core-shell and hollow semiconductors was evaluated via the decoloration of a methylene blue dye solution under UV-vis irradiation. The core-shell flowers exhibited a higher decoloration rate, when compared with bare ZnO flowers, TiO2 particles, and hollow TiO2 flowers, and the photoactivity was dependent on the TiO2 shell thickness. This was attributed to the efficient separation of the photogenerated holes and electrons at the ZnO-TiO2 interface. Moreover, the most photoactive core-shell catalyst exhibited excellent reusability and stability for at least three photocatalytic cycles and excellent superhydrophilicity without UV irradiation, which is due to the increased roughness of the flower-like structures.

20.
J Mater Sci Mater Med ; 29(7): 98, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29946888

RESUMO

Controlling the cell behavior on biocompatible polymer surfaces is critical for the development of suitable medical implant coatings as well as in anti-adhesive applications. Synthetic glycopolymer brushes, based on sugar methacrylate monomers have been reported as robust surfaces to resist protein adsorption and cell adhesion. In this study, poly(D-gluconamidoethyl methacrylate) (PGAMA) brushes of various chain lengths were synthesized directly from initiator functionalized glass substrates using surface-initiated atom transfer radical polymerization. The glycopolymer film thicknesses were determined by ellipsometry, whereas the wettability and the morphology of the surfaces were characterized by static water contact angle measurements and atomic force microscopy, respectively. Stable, grafted films with thicknesses in the dry state between 4 and 20 nm and of low roughness (~1 nm) were obtained by varying the polymerization time. Cell experiments with MC3T3-E1 pre-osteoblasts cultured on the PGAMA brushes were performed to examine the effect of film thickness on the cell morphology, cytoskeleton organization and growth. The results revealed good cell spreading and proliferation on PGAMA layers of low film thickness, whereas cell adhesion was prevented on polymer films with thickness higher than ~10 nm, indicating their potential use in medical implants and anti-adhesive surfaces, respectively.


Assuntos
Materiais Revestidos Biocompatíveis/química , Osteoblastos/citologia , Osteoblastos/fisiologia , Células 3T3 , Animais , Materiais Biocompatíveis , Adesão Celular , Proliferação de Células , Materiais Revestidos Biocompatíveis/síntese química , Teste de Materiais , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Ácidos Polimetacrílicos/síntese química , Ácidos Polimetacrílicos/química , Polissacarídeos/síntese química , Polissacarídeos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA