Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 9(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375077

RESUMO

Amino acids are essential metabolites but can also be toxic when present at high levels intracellularly. Substrate-induced downregulation of amino acid transporters in Saccharomyces cerevisiae is thought to be a mechanism to avoid this toxicity. It has been shown that unregulated uptake by the general amino acid permease Gap1 causes cells to become sensitive to amino acids. Here, we show that overexpression of eight other amino acid transporters (Agp1, Bap2, Can1, Dip5, Gnp1, Lyp1, Put4, or Tat2) also induces a growth defect when specific single amino acids are present at concentrations of 0.5-5 mM. We can now state that all proteinogenic amino acids, as well as the important metabolite ornithine, are growth inhibitory to S. cerevisiae when transported into the cell at high enough levels. Measurements of initial transport rates and cytosolic pH show that toxicity is due to amino acid accumulation and not to the influx of co-transported protons. The amino acid sensitivity phenotype is a useful tool that reports on the in vivo activity of transporters and has allowed us to identify new transporter-specific substrates.

2.
J Mol Biol ; 432(14): 4023-4031, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32413406

RESUMO

Membrane lipids act as solvents and functional cofactors for integral membrane proteins. The yeast plasma membrane is unusual in that it may have a high lipid order, which coincides with low passive permeability for small molecules and a slow lateral diffusion of proteins. Yet, membrane proteins whose functions require altered conformation must have flexibility within membranes. We have determined the molecular composition of yeast plasma membrane lipids located within a defined diameter of model proteins, including the APC-superfamily lysine transporter Lyp1. We now use the composition of lipids that naturally surround Lyp1 to guide testing of lipids that support the normal functioning of the transporter, when reconstituted in vesicles of defined lipid composition. We find that phosphatidylserine and ergosterol are essential for Lyp1 function, and the transport activity displays a sigmoidal relationship with the concentration of these lipids. Non-bilayer lipids stimulate transport activity, but different types are interchangeable. Remarkably, Lyp1 requires a relatively high fraction of lipids with one or more unsaturated acyl chains. The transport data and predictions of the periprotein lipidome of Lyp1 support a new model in which a narrow band of lipids immediately surrounding the transmembrane stalk of a model protein allows conformational changes in the protein.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Lipídeos de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Cinética , Lisina/metabolismo , Lipídeos de Membrana/metabolismo
3.
Elife ; 92020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32301705

RESUMO

Yeast tolerates a low pH and high solvent concentrations. The permeability of the plasma membrane (PM) for small molecules is low and lateral diffusion of proteins is slow. These findings suggest a high degree of lipid order, which raises the question of how membrane proteins function in such an environment. The yeast PM is segregated into the Micro-Compartment-of-Can1 (MCC) and Pma1 (MCP), which have different lipid compositions. We extracted proteins from these microdomains via stoichiometric capture of lipids and proteins in styrene-maleic-acid-lipid-particles (SMALPs). We purified SMALP-lipid-protein complexes by chromatography and quantitatively analyzed periprotein lipids located within the diameter defined by one SMALP. Phospholipid and sterol concentrations are similar for MCC and MCP, but sphingolipids are enriched in MCP. Ergosterol is depleted from this periprotein lipidome, whereas phosphatidylserine is enriched relative to the bulk of the plasma membrane. Direct detection of PM lipids in the 'periprotein space' supports the conclusion that proteins function in the presence of a locally disordered lipid state.


Assuntos
Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Lipidômica/métodos , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Esteróis/metabolismo
4.
FEBS J ; 287(20): 4401-4414, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32096906

RESUMO

Yeast amino acid transporters of the APC superfamily are responsible for the proton motive force-driven uptake of amino acids into the cell, which for most secondary transporters is a reversible process. The l-lysine proton symporter Lyp1 of Saccharomyces cerevisiae is special in that the Michaelis constant from out-to-in transport ( Kmout→in ) is much lower than Kmin→out , which allows accumulation of l-lysine to submolar concentration. It has been proposed that high intracellular lysine is part of the antioxidant mechanism of the cell. The molecular basis for the unique kinetic properties of Lyp1 is unknown. We compared the sequence of Lyp1 with APC para- and orthologues and find structural features that set Lyp1 apart, including differences in extracellular loop regions. We screened the extracellular loops by alanine mutagenesis and determined Lyp1 localization and activity and find positions that affect either the localization or activity of Lyp1. Half of the affected mutants are located in the extension of extracellular loop 3 or in a predicted α-helix in extracellular loop 4. Our data indicate that extracellular loops not only connect the transmembrane helices but also serve functionally important roles.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/análise , Sistemas de Transporte de Aminoácidos Básicos/genética , Biologia Computacional , Cinética , Lisina/metabolismo , Modelos Moleculares , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética
5.
Microbiol Mol Biol Rev ; 83(4)2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31619504

RESUMO

We review the mechanisms responsible for amino acid homeostasis in Saccharomyces cerevisiae and other fungi. Amino acid homeostasis is essential for cell growth and survival. Hence, the de novo synthesis reactions, metabolic conversions, and transport of amino acids are tightly regulated. Regulation varies from nitrogen pool sensing to control by individual amino acids and takes place at the gene (transcription), protein (posttranslational modification and allostery), and vesicle (trafficking and endocytosis) levels. The pools of amino acids are controlled via import, export, and compartmentalization. In yeast, the majority of the amino acid transporters belong to the APC (amino acid-polyamine-organocation) superfamily, and the proteins couple the uphill transport of amino acids to the electrochemical proton gradient. Although high-resolution structures of yeast amino acid transporters are not available, homology models have been successfully exploited to determine and engineer the catalytic and regulatory functions of the proteins. This has led to a further understanding of the underlying mechanisms of amino acid sensing and subsequent downregulation of transport. Advances in optical microscopy have revealed a new level of regulation of yeast amino acid transporters, which involves membrane domain partitioning. The significance and the interrelationships of the latest discoveries on amino acid homeostasis are put in context.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Transporte Biológico , Homeostase , Nitrogênio/metabolismo , Processamento de Proteína Pós-Traducional , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA