Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 5(22): 11668-72, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24152094

RESUMO

A nanoscale Schottky diode using Pt nanodisks on a Nb-doped SrTiO3 (Nb:STO) single crystal was fabricated, and resistive switching (RS) was demonstrated with conductive atomic force microscopy at ultrahigh vacuum. Pt disks with diameters on the order of 10 nm were formed using colloidal self-assembled patterns of silica nanospheres, followed by evaporation of the Pt layers on the Nb:STO single crystal. Here we show that the reproducible bipolar RS behavior of the nanoscale Pt/Nb:STO Schottky junction was achieved by utilizing local current-voltage spectroscopy. The conductance images, obtained simultaneously with topographic images, show the homogeneous current distribution of selected triangular-shaped Pt nanodisks during repetitive resistive switching between the high-resistance state (HRS) and low-resistance state (LRS). The endurance characteristics of the Pt/Nb:STO junction exhibit reliable switching behavior. These results suggest that the rectifying and resistive Pt/Nb:STO junction can be scaled down to the 10 nm range and their position can be controlled.

2.
Langmuir ; 29(9): 3054-60, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23413954

RESUMO

The wettability of TiO2 layers is controlled by forming highly ordered arrays of nanocones using nanopatterning, based on self-assembly and dry etching. Nanopatterning of TiO2 layers is achieved via formation of self-assembled monolayers of SiO2 spheres fabricated using the Langmuir-Blodgett technique, followed by dry etching. Three types of TiO2 layers were fabricated using the sol-gel technique, sputtering, and thermal process in order to address the relationship between the wettability and the structure of TiO2 nanostructures. Compared to a thin film TiO2 layer, the nanopatterned TiO2 samples show a smaller static water contact angle (i.e., where the water contact angle decreases as the etching time increases), which is attributed to the Wenzel equation. When TiO2 layers are coated by 1H,1H,2H,2H-perfluorooctyltrichlorosilane, we observed the opposite behavior, exhibiting superhydrophobicity (up to contact angle of 155°) on the nanopatterned TiO2 layers. Self-assembled nanopatterning of the TiO2 layer may provide an advanced method for producing multifunctional transparent layers with self-cleaning properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA