Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3435, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341454

RESUMO

Compact data representations in quantum systems are crucial for the development of quantum algorithms for data analysis. In this study, we present two innovative data encoding techniques, known as QCrank and QBArt, which exhibit significant quantum parallelism via uniformly controlled rotation gates. The QCrank method encodes a series of real-valued data as rotations on data qubits, resulting in increased storage capacity. On the other hand, QBArt directly incorporates a binary representation of the data within the computational basis, requiring fewer quantum measurements and enabling well-established arithmetic operations on binary data. We showcase various applications of the proposed encoding methods for various data types. Notably, we demonstrate quantum algorithms for tasks such as DNA pattern matching, Hamming weight computation, complex value conjugation, and the retrieval of a binary image with 384 pixels, all executed on the Quantinuum trapped-ion QPU. Furthermore, we employ several cloud-accessible QPUs, including those from IBMQ and IonQ, to conduct supplementary benchmarking experiments.

2.
IEEE Comput Graph Appl ; 43(6): 101-111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37930891

RESUMO

The focus of this Visualization Viewpoints article is to provide some background on quantum computing (QC), to explore ideas related to how visualization helps in understanding QC, and examine how QC might be useful for visualization with the growth and maturation of both technologies in the future. In a quickly evolving technology landscape, QC is emerging as a promising pathway to overcome the growth limits in classical computing. In some cases, QC platforms offer the potential to vastly outperform the familiar classical computer by solving problems more quickly or that may be intractable on any known classical platform. As further performance gains for classical computing platforms are limited by diminishing Moore's Law scaling, QC platforms might be viewed as a potential successor to the current field of exascale-class platforms. While present-day QC hardware platforms are still limited in scale, the field of quantum computing is robust and rapidly advancing in terms of hardware capabilities, software environments for developing quantum algorithms, and educational programs for training the next generation of scientists and engineers. After a brief introduction to QC concepts, the focus of this article is to explore the interplay between the fields of visualization and QC. First, visualization has played a role in QC by providing the means to show representations of the quantum state of single-qubits in superposition states and multiple-qubits in entangled states. Second, there are a number of ways in which the field of visual data exploration and analysis may potentially benefit from this disruptive new technology though there are challenges going forward.

4.
Sci Rep ; 12(1): 7712, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546151

RESUMO

We introduce a novel and uniform framework for quantum pixel representations that overarches many of the most popular representations proposed in the recent literature, such as (I)FRQI, (I)NEQR, MCRQI, and (I)NCQI. The proposed QPIXL framework results in more efficient circuit implementations and significantly reduces the gate complexity for all considered quantum pixel representations. Our method scales linearly in the number of pixels and does not use ancilla qubits. Furthermore, the circuits only consist of [Formula: see text] gates and [Formula: see text] gates making them practical in the NISQ era. Additionally, we propose a circuit and image compression algorithm that is shown to be highly effective, being able to reduce the necessary gates to prepare an FRQI state for example scientific images by up to 90% without sacrificing image quality. Our algorithms are made publicly available as part of QPIXL++, a Quantum Image Pixel Library.

5.
J Chem Theory Comput ; 16(9): 5425-5431, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32822184

RESUMO

Simulating chemical systems on quantum computers has been limited to a few electrons in a minimal basis. We demonstrate experimentally that the virtual quantum subspace expansion (Takeshita, T.; Phys. Rev. X 2020, 10, 011004, 10.1103/PhysRevX.10.011004) can achieve full basis accuracy for hydrogen and lithium dimers, comparable to simulations requiring 20 or more qubits. We developed an approach to minimize the impact of experimental noise on the stability of the generalized eigenvalue problem, a crucial component of the quantum algorithm. In addition, we were able to obtain an accurate potential energy curve for the nitrogen dimer in a quantum simulation on a classical computer.

6.
J Chem Theory Comput ; 15(5): 3185-3196, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-30951302

RESUMO

The Green's function coupled cluster (GFCC) method, originally proposed in the early 1990s, is a powerful many-body tool for computing and analyzing the electronic structure of molecular and periodic systems, especially when electrons of the system are strongly correlated. However, in order for the GFCC to become a method that may be routinely used in the electronic structure calculations, robust numerical techniques and approximations must be employed to reduce its extremely high computational overhead. In our recent studies, it has been demonstrated that the GFCC equations can be solved directly in the frequency domain using iterative linear solvers, which can be easily distributed in a massively parallel environment. In the present work, we demonstrate a successful application of model-order-reduction (MOR) techniques in the GFCC framework. Briefly speaking, for a frequency regime of interest that requires high-resolution descriptions of spectral function, instead of solving the GFCC linear equation of full dimension for every single frequency point of interest, an efficiently solvable linear system model of a reduced dimension may be built upon projecting the original GFCC linear system onto a subspace. From this reduced order model is obtained a reasonable approximation to the full dimensional GFCC linear equations in both interpolative and extrapolative spectral regions. Here, we show that the subspace can be properly constructed in an iterative manner from the auxiliary vectors of the GFCC linear equations at some selected frequencies within the spectral region of interest. During the iterations, the quality of the subspace, as well as the linear system model, can be systematically improved. The method is tested in this work in terms of the efficiency and accuracy of computing spectral functions for some typical molecular systems such as carbon monoxide, 1,3-butadiene, benzene, and adenine. To reach the same level of accuracy as that of the original GFCC method, the application of MOR in the GFCC method is able to significantly lower the original computational cost for the aforementioned molecules in designated frequency regimes. As a byproduct, the reduced order model obtained by this method is found to provide a high-quality initial guess, which improves the convergence rate for the existing iterative linear solver.

7.
J Chem Theory Comput ; 13(10): 4950-4961, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28862869

RESUMO

The ab initio description of the spectral interior of the absorption spectrum poses both a theoretical and computational challenge for modern electronic structure theory. Due to the often spectrally dense character of this domain in the quantum propagator's eigenspectrum for medium-to-large sized systems, traditional approaches based on the partial diagonalization of the propagator often encounter oscillatory and stagnating convergence. Electronic structure methods which solve the molecular response problem through the solution of spectrally shifted linear systems, such as the complex polarization propagator, offer an alternative approach which is agnostic to the underlying spectral density or domain location. This generality comes at a seemingly high computational cost associated with solving a large linear system for each spectral shift in some discretization of the spectral domain of interest. In this work, we present a novel, adaptive solution to this high computational overhead based on model order reduction techniques via interpolation. Model order reduction reduces the computational complexity of mathematical models and is ubiquitous in the simulation of dynamical systems and control theory. The efficiency and effectiveness of the proposed algorithm in the ab initio prediction of X-ray absorption spectra is demonstrated using a test set of challenging water clusters which are spectrally dense in the neighborhood of the oxygen K-edge. On the basis of a single, user defined tolerance we automatically determine the order of the reduced models and approximate the absorption spectrum up to the given tolerance. We also illustrate that, for the systems studied, the automatically determined model order increases logarithmically with the problem dimension, compared to a linear increase of the number of eigenvalues within the energy window. Furthermore, we observed that the computational cost of the proposed algorithm only scales quadratically with respect to the problem dimension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA