Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 234, 2024 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433235

RESUMO

INTRODUCTION: The study of resistance-causing mutations in oncogene-driven tumors is fundamental to guide clinical decisions. Several point mutations affecting the ROS1 kinase domain have been identified in the clinical setting, but their impact requires further exploration, particularly in improved pre-clinical models. Given the scarcity of solid pre-clinical models to approach rare cancer subtypes like ROS1 + NSCLC, CRISPR/Cas9 technology allows the introduction of mutations in patient-derived cell lines for which resistant variants are difficult to obtain due to the low prevalence of cases within the clinical setting. METHODS: In the SLC34A2-ROS1 rearranged NSCLC cell line HCC78, we knocked-in through CRISPR/Cas9 technology three ROS1 drug resistance-causing mutations: G2032R, L2026M and S1986Y. Such variants are located in different functional regions of the ROS1 kinase domain, thus conferring TKI resistance through distinct mechanisms. We then performed pharmacological assays in 2D and 3D to assess the cellular response of the mutant lines to crizotinib, entrectinib, lorlatinib, repotrectinib and ceritinib. In addition, immunoblotting assays were performed in 2D-treated cell lines to determine ROS1 phosphorylation and MAP kinase pathway activity. The area over the curve (AOC) defined by the normalized growth rate (NGR_fit) dose-response curves was the variable used to quantify the cellular response towards TKIs. RESULTS: Spheroids derived from ROS1G2032R cells were significantly more resistant to repotrectinib (AOC fold change = - 7.33), lorlatinib (AOC fold change = - 6.17), ceritinib (AOC fold change = - 2.8) and entrectinib (AOC fold change = - 2.02) than wild type cells. The same cells cultured as a monolayer reflected the inefficacy of crizotinib (AOC fold change = - 2.35), entrectinib (AOC fold change = - 2.44) and ceritinib (AOC fold change = - 2.12) in targeting the ROS1 G2032R mutation. ROS1L2026M cells showed also remarkable resistance both in monolayer and spheroid culture compared to wild type cells, particularly against repotrectinib (spheroid AOC fold change = - 2.19) and entrectinib (spheroid AOC fold change = - 1.98). ROS1S1986Y cells were resistant only towards crizotinib in 2D (AOC fold change = - 1.86). Overall, spheroids showed an increased TKI sensitivity compared to 2D cultures, where the impact of each mutation that confers TKI resistance could be clearly distinguished. Western blotting assays qualitatively reflected the patterns of response towards TKI observed in 2D culture through the levels of phosphorylated-ROS1. However, we observed a dose-response increase of phosphorylated-Erk1/2, suggesting the involvement of the MAPK pathway in the mediation of apoptosis in HCC78 cells. CONCLUSION: In this study we knock-in for the first time in a ROS1 + patient-derived cell line, three different known resistance-causing mutations using CRISPR/Cas9 in the endogenous translocated ROS1 alleles. Pharmacological assays performed in 2D and 3D cell culture revealed that spheroids are more sensitive to TKIs than cells cultured as a monolayer. This direct comparison between two culture systems could be done thanks to the implementation of normalized growth rates (NGR) to uniformly quantify drug response between 2D and 3D cell culture. Overall, this study presents the added value of using spheroids and positions lorlatinib and repotrectinib as the most effective TKIs against the studied ROS1 resistance point mutations.


Assuntos
Aminopiridinas , Benzamidas , Carcinoma Pulmonar de Células não Pequenas , Indazóis , Lactamas , Neoplasias Pulmonares , Pirazóis , Pirimidinas , Sulfonas , Humanos , Proteínas Tirosina Quinases/genética , Crizotinibe , Sistemas CRISPR-Cas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas , Resistência a Medicamentos
2.
Hear Res ; 442: 108947, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218018

RESUMO

DFNA9 is a dominantly inherited form of adult-onset progressive hearing impairment caused by mutations in the COCH gene. COCH encodes cochlin, a crucial extracellular matrix protein. We established a genomically humanized mouse model for the Dutch/Belgian c.151C>T founder mutation in COCH. Considering upcoming sequence-specific genetic therapies, we exchanged the genomic murine Coch exons 3-6 for the corresponding human sequence. Introducing human-specific genetic information into mouse exons can be risky. To mitigate unforeseen consequences on cochlin function resulting from the introduction of the human COCH protein-coding sequence, we converted all human-specific amino acids to mouse equivalents. We furthermore optimized the recognition of the human COCH exons by the murine splicing machinery during pre-mRNA splicing. Subsequent observations in mouse embryonic stem cells revealed correct splicing of the hybrid Coch transcript. The inner ear of the established humanized Coch mice displays correctly-spliced wild-type and mutant humanized Coch alleles. For a comprehensive study of auditory function, mice were crossbred with C57BL/6 Cdh23753A>G mice to remove the Cdh23ahl allele from the genetic background of the mice. At 9 months, all humanized Coch genotypes showed hearing thresholds comparable to wild-type C57BL/6 Cdh23753A>G mice. This indicates that both the introduction of human wildtype COCH, and correction of Cdh23ahl in the humanized Coch lines was successful. Overall, our approach proved beneficial in eliminating potential adverse events of genomic humanization of mouse genes, and provides us with a model in which sequence-specific therapies directed against the human mutant COCH alle can be investigated. With the hearing and balance defects anticipated to occur late in the second year of life, a long-term follow-up study is ongoing to fully characterize the humanized Coch mouse model.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Adulto , Animais , Camundongos , Humanos , Seguimentos , Camundongos Endogâmicos C57BL , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Surdez/genética , Proteínas da Matriz Extracelular/genética , Mutação , Caderinas/genética
3.
Biosens Bioelectron ; 249: 115957, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199080

RESUMO

Single nucleotide point mutations in the KRAS oncogene occur frequently in human cancers, rendering them intriguing targets for diagnosis, early detection and personalized treatment. Current detection methods are based on polymerase chain reaction, sometimes combined with next-generation sequencing, which can be expensive, complex and have limited availability. Here, we propose a novel singlet oxygen (1O2)-based photoelectrochemical detection methodology for single-point mutations, using KRAS mutations as a case study. This detection method combines the use of a sandwich assay, magnetic beads and robust chemical photosensitizers, that need only air and light to produce 1O2, to ensure high specificity and sensitivity. We demonstrate that hybridization of the sandwich hybrid at high temperatures enables discrimination between mutated and wild-type sequences with a detection rate of up to 93.9%. Additionally, the presence of background DNA sequences derived from human cell-line DNA, not containing the mutation of interest, did not result in a signal, highlighting the specificity of the methodology. A limit of detection as low as 112 pM (1.25 ng/mL) was achieved without employing any amplification techniques. The developed 1O2-based photoelectrochemical methodology exhibits unique features, including rapidity, ease of use, and affordability, highlighting its immense potential in the field of nucleic acid-based diagnostics.


Assuntos
Técnicas Biossensoriais , Mutação Puntual , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Oxigênio Singlete , Proteínas ras/genética , Análise Mutacional de DNA/métodos , Mutação , Oncogenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA