Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glia ; 71(9): 2071-2095, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37222453

RESUMO

Insights into the role astrocytes and microglia play in normal and diseased brain functioning has expanded drastically over the last decade. Recently, chemogenetic tools have emerged as cutting-edge techniques, allowing targeted and spatiotemporal precise manipulation of a specific glial cell type. As a result, significant advances in astrocyte and microglial cell function have been made, showing how glial cells can intervene in central nervous system (CNS) functions such as cognition, reward and feeding behavior in addition to their established contribution in brain diseases, pain, and CNS inflammation. Here, we discuss the latest insights in glial functions in health and disease that have been made through the application of chemogenetics. We will focus on the manipulation of intracellular signaling pathways induced by activation of the designer receptors exclusively activated by designer drugs (DREADDs) in astrocytes and microglia. We will also elaborate on some of the potential pitfalls and the translational potential of the DREADD technology.


Assuntos
Drogas Desenhadas , Microglia , Astrócitos , Drogas Desenhadas/farmacologia , Transdução de Sinais , Neuroglia
2.
Front Behav Neurosci ; 15: 743959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776890

RESUMO

Introduction: Single housing of laboratory mice is a common practice to meet experimental needs, or to avoid intermale aggression. However, single housing is considered to negatively affect animal welfare and may compromise the scientific validity of experiments. The aim of this study was to investigate whether the use of a cage with a cage divider, which avoids physical contact between mice while maintaining sensory contact, may be a potential refinement strategy for experiments in which group housing of mice is not possible. Methods: Eight-week-old male C57BL/6JRj mice were single housed, pair housed or pair housed with a cage divider for four (experiment 1) or ten (experiment 2) weeks, after which we performed an open field test, Y-maze spontaneous alternation test, elevated plus maze test, an auditory fear conditioning task, and assessed responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis. Results: Housing conditions did not affect body weight, exploratory activity, anxiety, working memory, fear memory processing or markers for HPA-axis functioning in either experiment 1 or experiment 2. There was an increased distance traveled in mice housed with a cage divider compared to pair housed mice after 4 weeks, and after 10 weeks mice housed with a cage divider made significantly more arm entries in the Y-maze spontaneous alternation test. Conclusion: Taken together, our study did not provide evidence for robust differences in exploratory activity, anxiety, working memory and fear memory processing in male C57BL/6JRj mice that were single housed, pair housed or pair housed with a cage divider.

3.
Mol Brain ; 14(1): 144, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544455

RESUMO

Astrocytes express a plethora of G protein-coupled receptors (GPCRs) that are crucial for shaping synaptic activity. Upon GPCR activation, astrocytes can respond with transient variations in intracellular Ca2+. In addition, Ca2+-dependent and/or Ca2+-independent release of gliotransmitters can occur, allowing them to engage in bidirectional neuron-astrocyte communication. The development of designer receptors exclusively activated by designer drugs (DREADDs) has facilitated many new discoveries on the roles of astrocytes in both physiological and pathological conditions. They are an excellent tool, as they can target endogenous GPCR-mediated intracellular signal transduction pathways specifically in astrocytes. With increasing interest and accumulating research on this topic, several discrepancies on astrocytic Ca2+ signalling and astrocyte-mediated effects on synaptic plasticity have emerged, preventing a clear-cut consensus about the downstream effects of DREADDs in astrocytes. In the present study, we performed a side-by-side evaluation of the effects of bath application of the DREADD agonist, clozapine-N-oxide (10 µM), on Gq- and Gi-DREADD activation in mouse CA1 hippocampal astrocytes. In doing so, we aimed to avoid confounding factors, such as differences in experimental procedures, and to directly compare the actions of both DREADDs on astrocytic intracellular Ca2+ dynamics and synaptic plasticity in acute hippocampal slices. We used an adeno-associated viral vector approach to transduce dorsal hippocampi of male, 8-week-old C57BL6/J mice, to drive expression of either the Gq-DREADD or Gi-DREADD in CA1 astrocytes. A viral vector lacking the DREADD construct was used to generate controls. Here, we show that agonism of Gq-DREADDs, but not Gi-DREADDs, induced consistent increases in spontaneous astrocytic Ca2+ events. Moreover, we demonstrate that both Gq-DREADD as well as Gi-DREADD-mediated activation of CA1 astrocytes induces long-lasting synaptic potentiation in the hippocampal CA1 Schaffer collateral pathway in the absence of a high frequency stimulus. Moreover, we report for the first time that astrocytic Gi-DREADD activation is sufficient to elicit de novo potentiation. Our data demonstrate that activation of either Gq or Gi pathways drives synaptic potentiation through Ca2+-dependent and Ca2+-independent mechanisms, respectively.


Assuntos
Astrócitos/fisiologia , Região CA1 Hipocampal/fisiologia , Sinalização do Cálcio/fisiologia , Clozapina/análogos & derivados , Drogas Desenhadas/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Região CA1 Hipocampal/citologia , Clozapina/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/efeitos dos fármacos , Vetores Genéticos/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Receptores Acoplados a Proteínas G/efeitos dos fármacos
4.
Eur J Neurol ; 28(9): 3100-3112, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34157194

RESUMO

BACKGROUND: Current drugs for epilepsy affect seizures, but no antiepileptogenic or disease-modifying drugs are available that prevent or slow down epileptogenesis, which is characterized by neuronal cell loss, inflammation and aberrant network formation. Ghrelin and ghrelin receptor (ghrelin-R) agonists were previously found to exert anticonvulsant, neuroprotective and anti-inflammatory effects in seizure models and immediately after status epilepticus (SE). Therefore, the aim of this study was to assess whether the ghrelin-R agonist macimorelin is antiepileptogenic in the pharmacoresistant intrahippocampal kainic acid (IHKA) mouse model. METHODS: SE was induced in C57BL/6 mice by unilateral IHKA injection. Starting 24 h after SE, mice were treated intraperitoneally with macimorelin (5 mg/kg) or saline twice daily for 2 weeks, followed by a 2-week wash-out. Mice were continuously electroencephalogram-monitored, and at the end of the experiment neuroprotection and gliosis were assessed. RESULTS: Macimorelin significantly decreased the number and duration of seizures during the treatment period, but had no antiepileptogenic or disease-modifying effect in this dose regimen. While macimorelin did not significantly affect food intake or body weight over a 2-week treatment period, its acute orexigenic effect was preserved in epileptic mice but not in sham mice. CONCLUSIONS: While the full ghrelin-R agonist macimorelin was not significantly antiepileptogenic nor disease-modifying, this is the first study to demonstrate its anticonvulsant effects in the IHKA model of drug-refractory temporal lobe epilepsy. These findings highlight the potential use of macimorelin as a novel treatment option for seizure suppression in pharmacoresistant epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Animais , Modelos Animais de Doenças , Eletroencefalografia , Hipocampo , Humanos , Indóis , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Grelina , Convulsões/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico , Triptofano/análogos & derivados
5.
Int J Mol Sci ; 20(10)2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31137460

RESUMO

The ghrelin system has received substantial recognition as a potential target for novel anti-seizure drugs. Ghrelin receptor (ghrelin-R) signaling is complex, involving Gαq/11, Gαi/o, Gα12/13, and ß-arrestin pathways. In this study, we aimed to deepen our understanding regarding signaling pathways downstream the ghrelin-R responsible for mediating anticonvulsive effects in a kindling model. Mice were administered the proconvulsive dopamine 1 receptor-agonist, SKF81297, to gradually induce a kindled state. Prior to every SKF81297 injection, mice were treated with a ghrelin-R full agonist (JMV-1843), a Gαq and Gα12 biased ligand unable to recruit ß-arrestin (YIL781), a ghrelin-R antagonist (JMV-2959), or saline. Mice treated with JMV-1843 had fewer and less severe seizures compared to saline-treated controls, while mice treated with YIL781 experienced longer and more severe seizures. JMV-2959 treatment did not lead to differences in seizure severity and number. Altogether, these results indicate that the Gαq or Gα12 signaling pathways are not responsible for mediating JMV-1843's anticonvulsive effects and suggest a possible involvement of ß-arrestin signaling in the anticonvulsive effects mediated by ghrelin-R modulation.


Assuntos
Encéfalo/metabolismo , Excitação Neurológica , Receptores de Grelina/agonistas , Animais , Benzazepinas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Agonistas de Dopamina/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Receptores de Grelina/antagonistas & inibidores , Triazóis/farmacologia , Triptofano/análogos & derivados , Triptofano/farmacologia , beta-Arrestinas/farmacologia
6.
Neurochem Res ; 44(3): 600-608, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30097883

RESUMO

Temporal lobe epilepsy (TLE) is an acquired form of focal epilepsy, in which patients not only suffer from unprovoked, devastating seizures, but also from severe comorbidities, such as cognitive dysfunction. Correspondingly, several animal models of TLE exhibit memory dysfunction, especially spatial memory. The Morris water maze test is the most commonly used test for assessing spatial learning and memory in rodents. However, high stress and poor swimming abilities are common confounders and may contribute to misinterpretation. Particularly epileptic mice show altered behaviour during the test as they fail to understand the paradigm context. In the Barnes maze test, a dry-land maze test for spatial learning and memory that uses milder aversive stimuli, these drawbacks have not yet been reported. In the present study, we use this task to evaluate spatial learning and memory in the intrahippocampal kainic acid mouse model of TLE. We demonstrate that the epileptic mice understand the Barnes maze paradigm context, as they learn the location of the escape-chamber by using a serial search strategy but fail to develop the more efficient spatial search strategy. Our data indicate that the Barnes maze may be a better alternative to the Morris water maze for assessing search strategies and impairment of learning and memory in epileptic mice.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Aprendizagem em Labirinto/fisiologia , Aprendizagem Espacial/fisiologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Ácido Caínico/farmacologia , Camundongos Endogâmicos C57BL , Percepção Espacial/fisiologia , Memória Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA