Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-38683369

RESUMO

The functioning of the human heart relies on complex electrical and communication systems that coordinate cardiac contractions and sustain rhythmicity. One of the key players contributing to this intricate system is the KIR2.1 potassium ion channel, which is encoded by the KCNJ2 gene. KIR2.1 channels exhibit abundant expression in both ventricular myocytes and Purkinje fibers, exerting an important role in maintaining the balance of intracellular potassium ion levels within the heart. And by stabilizing the resting membrane potential and contributing to action potential repolarization, these channels have an important role in cardiac excitability also. Either gain- or loss-of-function mutations, but also acquired impairments of their function, are implicated in the pathogenesis of diverse types of cardiac arrhythmias. In this review, we aim to elucidate the system functions of KIR2.1 channels related to cellular electrical signaling, communication, and their contributions to cardiovascular disease. Based on this knowledge, we will discuss existing and new pharmacological avenues to modulate their function.

3.
BMC Med Educ ; 24(1): 115, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321518

RESUMO

INTRODUCTION: Medical undergraduate students receive limited education on scholarly publishing. However, publishing experiences during this phase are known to influence study and career paths. The medical bachelor Honours Program (HP) at Utrecht University initiated a hands-on writing and publishing course, which resulted in nine reviews published in internationally peer reviewed academic journals. We wanted to share the project set-up, explore the academic development of the participating students and determine the impact of the reviews on the scientific community. METHODS: Thirty-one out of 50 alumni completed a digital retrospective questionnaire on for example, development of skills and benefit for their studies and career. Publication metrics of the HP review papers were retrieved from Web of Science. RESULTS: This hands-on project provides a clear teaching method on academic writing and scholarly publishing in the bachelor medical curriculum. Participants were able to obtain and improve writing and publishing skills. The output yielded well-recognized scientific papers and valuable learning experiences. 71% of the participating students published at least one additional paper following this project, and 55% of the students indicated the project influenced their academic study and/or career path. Nine manuscripts were published in journals with an average impact factor of 3.56 and cited on average 3.73 times per year. DISCUSSION: This course might inspire other medical educators to incorporate similar projects successfully into their curriculum. To this end, a number of recommendations with regard to supervision, time investment and group size are given.


Assuntos
Estudantes de Medicina , Humanos , Estudos Retrospectivos , Universidades , Currículo , Editoração
4.
Front Physiol ; 15: 1298340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328302

RESUMO

Background: The rapid delayed rectifier potassium current (IKr) is important for cardiac repolarization and is most often involved in drug-induced arrhythmias. However, accurately measuring this current can be challenging in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes because of its small current density. Interestingly, the ion channel conducting IKr, hERG channel, is not only permeable to K+ ions but also to Cs+ ions when present in equimolar concentrations inside and outside of the cell. Methods: In this study, IhERG was measured from Chinese hamster ovary (CHO)-hERG cells and hiPSC-CM using either Cs+ or K+ as the charge carrier. Equimolar Cs+ has been used in the literature in manual patch-clamp experiments, and here, we apply this approach using automated patch-clamp systems. Four different (pre)clinical drugs were tested to compare their effects on Cs+- and K+-based currents. Results: Using equimolar Cs+ solutions gave rise to approximately ten-fold larger hERG conductances. Comparison of Cs+- and K+-mediated currents upon application of dofetilide, desipramine, moxifloxacin, or LUF7244 revealed many similarities in inhibition or activation properties of the drugs studied. Using equimolar Cs+ solutions gave rise to approximately ten-fold larger hERG conductances. In hiPSC-CM, the Cs+-based conductance is larger compared to the known K+-based conductance, and the Cs+ hERG conductance can be inhibited similarly to the K+-based conductance. Conclusion: Using equimolar Cs+ instead of K+ for IhERG measurements in an automated patch-clamp system gives rise to a new method by which, for example, quick scans can be performed on effects of drugs on hERG currents. This application is specifically relevant when such experiments are performed using cells which express small IKr current densities in combination with small membrane capacitances.

5.
Europace ; 25(11)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37949832

RESUMO

AIMS: An automated method for determination of short-term variability (STV) of repolarization on intracardiac electrograms (STV-ARIauto) has previously been developed for arrhythmic risk monitoring by cardiac implantable devices, and has proved effective in predicting ventricular arrhythmias (VA) and guiding preventive high-rate pacing (HRP) in a canine model. Current study aimed to assess (i) STV-ARIauto in relation to VA occurrence and secondarily (ii-a) to confirm the predictive capacity of STV from the QT interval and (ii-b) explore the effect of HRP on arrhythmic outcomes in a porcine model of acute myocardial infarction (MI). METHODS AND RESULTS: Myocardial infarction was induced in 15 pigs. In 7/15 pigs, STV-QT was assessed at baseline, occlusion, 1 min before VA, and just before VA. Eight of the 15 pigs were additionally monitored with an electrogram catheter in the right ventricle, underwent echocardiography at baseline and reperfusion, and were randomized to paced or control group. Paced group received atrial pacing at 20 beats per min faster than sinus rhythm 1 min after occlusion. Short-term variability increased prior to VA in both STV modalities. The percentage change in STV from baseline to successive timepoints correlated well between STV-QT and STV-ARIauto. High-rate pacing did not improve arrhythmic outcomes and was accompanied by a stronger decrease in ejection fraction. CONCLUSION: STV-ARIauto values increase before VA onset, alike STV-QT in a porcine model of MI, indicating imminent arrhythmias. This highlights the potential of automatic monitoring of arrhythmic risk by cardiac devices through STV-ARIauto and subsequently initiates preventive strategies. Continuous HRP during onset of acute MI did not improve arrhythmic outcomes.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Animais , Cães , Suínos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Isquemia Miocárdica/complicações , Ventrículos do Coração , Isquemia/complicações , Eletrocardiografia
6.
Biomedicines ; 11(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37189765

RESUMO

Long QT syndrome type 1 with affected IKs is associated with a high risk for developing Torsade de Pointes (TdP) arrhythmias and eventually sudden cardiac death. Therefore, it is of high interest to explore drugs that target IKs as antiarrhythmics. We examined the antiarrhythmic effect of IKs channel activator ML277 in the chronic atrioventricular block (CAVB) dog model. TdP arrhythmia sensitivity was tested in anesthetized mongrel dogs (n = 7) with CAVB in series: (1) induction experiment at 4 ± 2 weeks CAVB: TdP arrhythmias were induced with our standardized protocol using dofetilide (0.025 mg/kg), and (2) prevention experiment at 10 ± 2 weeks CAVB: the antiarrhythmic effect of ML277 (0.6-1.0 mg/kg) was tested by infusion for 5 min preceding dofetilide. ML277: (1) temporarily prevented repolarization prolongation induced by dofetilide (QTc: 538 ± 65 ms at induction vs. 393 ± 18 ms at prevention, p < 0.05), (2) delayed the occurrence of the first arrhythmic event upon dofetilide (from 129 ± 28 s to 180 ± 51 s, p < 0.05), and (3) decreased the arrhythmic outcome with a significant reduction in the number of TdP arrhythmias, TdP score, arrhythmia score and total arrhythmic events (from 669 ± 132 to 401 ± 228, p < 0.05). IKs channel activation by ML277 temporarily suppressed QT interval prolongation, delayed the occurrence of the first arrhythmic event and reduced the arrhythmic outcome in the CAVB dog model.

7.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986503

RESUMO

Expression and activity of inwardly rectifying potassium (KIR) channels within the heart are strictly regulated. KIR channels have an important role in shaping cardiac action potentials, having a limited conductance at depolarized potentials but contributing to the final stage of repolarization and resting membrane stability. Impaired KIR2.1 function causes Andersen-Tawil Syndrome (ATS) and is associated with heart failure. Restoring KIR2.1 function by agonists of KIR2.1 (AgoKirs) would be beneficial. The class 1c antiarrhythmic drug propafenone is identified as an AgoKir; however, its long-term effects on KIR2.1 protein expression, subcellular localization, and function are unknown. Propafenone's long-term effect on KIR2.1 expression and its underlying mechanisms in vitro were investigated. KIR2.1-carried currents were measured by single-cell patch-clamp electrophysiology. KIR2.1 protein expression levels were determined by Western blot analysis, whereas conventional immunofluorescence and advanced live-imaging microscopy were used to assess the subcellular localization of KIR2.1 proteins. Acute propafenone treatment at low concentrations supports the ability of propafenone to function as an AgoKir without disturbing KIR2.1 protein handling. Chronic propafenone treatment (at 25-100 times higher concentrations than in the acute treatment) increases KIR2.1 protein expression and KIR2.1 current densities in vitro, which are potentially associated with pre-lysosomal trafficking inhibition.

8.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982449

RESUMO

Chronic kidney disease (CKD) is represented by a diminished filtration capacity of the kidneys. End-stage renal disease patients need dialysis treatment to remove waste and toxins from the circulation. However, endogenously produced uremic toxins (UTs) cannot always be filtered during dialysis. UTs are among the CKD-related factors that have been linked to maladaptive and pathophysiological remodeling of the heart. Importantly, 50% of the deaths in dialysis patients are cardiovascular related, with sudden cardiac death predominating. However, the mechanisms responsible remain poorly understood. The current study aimed to assess the vulnerability of action potential repolarization caused by exposure to pre-identified UTs at clinically relevant concentrations. We exposed human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and HEK293 chronically (48 h) to the UTs indoxyl sulfate, kynurenine, or kynurenic acid. We used optical and manual electrophysiological techniques to assess action potential duration (APD) in the hiPSC-CMs and recorded IKr currents in stably transfected HEK293 cells (HEK-hERG). Molecular analysis of KV11.1, the ion channel responsible for IKr, was performed to further understand the potential mechanism underlying the effects of the UTs. Chronic exposure to the UTs resulted in significant APD prolongation. Subsequent assessment of the repolarization current IKr, often most sensitive and responsible for APD alterations, showed decreased current densities after chronic exposure to the UTs. This outcome was supported by lowered protein levels of KV11.1. Finally, treatment with an activator of the IKr current, LUF7244, could reverse the APD prolongation, indicating the potential modulation of electrophysiological effects caused by these UTs. This study highlights the pro-arrhythmogenic potential of UTs and reveals a mode of action by which they affect cardiac repolarization.


Assuntos
Células-Tronco Pluripotentes Induzidas , Insuficiência Renal Crônica , Humanos , Toxinas Urêmicas , Células HEK293 , Potenciais de Ação , Células-Tronco Pluripotentes Induzidas/metabolismo , Diálise Renal , Miócitos Cardíacos , Insuficiência Renal Crônica/metabolismo
9.
Int J Cardiol Heart Vasc ; 44: 101169, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36632286

RESUMO

Background: A preclinical model standardized at different remodeling stages after AV block induction in awake state is suitable for the evaluation of improved cardiac devices. We studied exercise-induced cardiorespiratory parameters at three different timepoints after inducing AV block in dogs. Methods: Mongrel dogs (n = 12) were placed on a treadmill with a 10% incline and performed a moderate exercise protocol (10-minute run at 6 km/h). Dogs ran at sinus rhythm (SR), at two days (AVB2d, initiation of remodeling), three weeks (CAVB3) and six weeks (CAVB6, completed remodeling) after AV block. Results: All dogs completed the exercise protocol at SR, CAVB3 and CAVB6, while 6/12 dogs at AVB2d failed to complete the exercise protocol. The atrial rate was higher at all AV block timepoints (126 ± 20 to 141 ± 19 bpm at rest and 221 ± 10 to 231 ± 13 bpm during exercise) compared to SR (100 ± 29 bpm at rest and 162 ± 28 bpm during exercise, p < 0.05). Upon exercise, stroke volume increased from 66 ± 15 ml at SR, to 96 ± 21 ml at AVB2d (p < 0.05), 91 ± 13 ml at CAVB3 (p < 0.05) and 85 ± 24 ml at CAVB6 but failed to compensate for the AV block-induced bradycardia. Therefore, cardiac output was lower after AV block compared to SR. Exercising dogs at AVB2d showed most arrhythmic events, lowest VO2, and signs of desaturation and acidification in venous blood. Conclusion: Dogs with limited remodeling after AV block have a reduced exercise tolerance, which is reflected in changes in cardiorespiratory parameters.

10.
Front Physiol ; 14: 1330230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179141

RESUMO

Background: An electrical storm of Torsade de Pointes arrhythmias (TdP) can be reproducibly induced in the anesthetized chronic AV-block (CAVB) dog by infusion of the IKr-blocker dofetilide. Earlier studies showed that these arrhythmias 1) arise from locations with high spatial dispersion in repolarization (SDR) and 2) can be suppressed by high-rate pacing. We examined whether suppression of TdP by high-rate pacing is established through a decrease in SDR in the CAVB dog. Methods: Dofetilide (25 µg/kg in 5 min) was administered to 5 anesthetized CAVB dogs to induce TdP arrhythmias. During the experiments, animals were continuously paced from the right ventricular apex at 50 beats/minute (RVA50). Upon TdP occurrence and conversion, RVA pacing was consecutively set to 100, 80 and 60 beats/minute for 2 min, referred to as pacing blocks. To determine the additional anti-arrhythmic effects of HRP over defibrillation alone, the number of arrhythmic events and SDR at RVA100 were compared to data from three previously conducted experiments, in which dogs underwent the same experimental protocol but were paced at RVA60 upon TdP occurrence (RVA60retro). In all experiments, recordings included surface electrocardiogram and mapping by 56 intramural needles, each recording four electrograms, evenly inserted into the ventricular walls and septum. For each pacing block, the number of ectopic beats (EB), and TdP severity were scored. SDR was quantified as the average difference in repolarization time within four squared needles (SDRcubic). Results: In 4 out of 5 animals, pacing at RVA100 suppressed TdP occurrence. One dog could not be converted by defibrillation after the initial TdP. Compared to RVA50, pacing at RVA100, but not RVA80 and RVA60, significantly reduced the TdP score (78 ± 33 vs. 0 ± 0, p < 0.05 and vs. 12.5 ± 25 and 25 ± 50, both p > 0.05). The reduction in TdP score was reflected by a significant decrease in SDRcubic (125 ± 46 ms before TdP vs. 49 ± 18 ms during RVA100, p < 0.05), and SDR was smaller than in the RVA60retro animals (101 ± 52 ms, p < 0.05 vs. RVA100). Conclusion: In CAVB dogs, high-rate pacing effectively suppresses TdP, which, at least in part, results from a spatial homogenization of cardiac repolarization, as reflected by a decrease in SDR.

11.
Eur J Pharmacol ; 932: 175218, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007604

RESUMO

INTRODUCTION: Impaired IKs induced by drugs or due to a KCNQ1 mutation, diagnosed as long QT syndrome type 1 (LQT1) prolongs the QT interval and predisposes the heart to Torsade de Pointes (TdP) arrhythmias. The anesthetized chronic AV block (CAVB) dog is inducible for TdP after remodeling and IKr inhibitor dofetilide. We tested the proarrhythmic effect of IKs inhibition in the CAVB dog, and the proarrhythmic role of increased contractility herein. METHODS: Dofetilide-inducible animals were included to test the proarrhythmic effect of 1) IKs inhibition by JNJ303 (0.63 mg/kg/10min i.v.; n = 4), 2) IKs inhibition combined with enhanced inotropy (ouabain, 0.045 mg/kg/1min i.v.; n = 6), and 3) the washout period of the anesthetic regime (n = 10). RESULTS: JNJ303 prolonged the QTc interval (from 477 ± 53 ms to 565 ± 14 ms, P < 0.02) resembling standardized dofetilide-induced QTc prolongation. Single ectopic beats (n = 4) and ventricular tachycardia (VT) (n = 3) were present, increasing the arrhythmia score (AS) from 1.0 ± 0 to 7.1 ± 6.5. JNJ303 combined with ouabain increased contractile parameters (LVdP/dtmax from 1725 ± 273 to 4147 ± 611 mmHg/s, P < 0.01). Moreover, TdP arrhythmias were induced in 4/6 dogs and AS increased from 1.0 ± 0 to 20.2 ± 19.0 after JNJ303 and ouabain (P < 0.05). Finally, TdP arrhythmias were induced in 4/10 dogs during the anesthesia washout period and the AS increased from 1.1 ± 0.3 to 9.2 ± 11.2. CONCLUSION: Mimicking LQT1 using IKs inhibitor JNJ303 prolongs the QTc interval and triggers ectopic beats and non-sustained VT in the CAVB dog. Induction of the more severe arrhythmic events (TdP) demands a combination of IKs inhibition with enhanced inotropy or ending the anesthetic regime.


Assuntos
Bloqueio Atrioventricular , Torsades de Pointes , Animais , Antiarrítmicos/farmacologia , Arritmias Cardíacas/induzido quimicamente , Proteínas de Ligação a DNA , Cães , Canal de Potássio KCNQ1 , Ouabaína , Fenetilaminas , Sulfonamidas , Torsades de Pointes/induzido quimicamente
12.
Br J Pharmacol ; 179(5): 859-881, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684961

RESUMO

Ventricular cardiac arrhythmia is a life threating condition arising from abnormal functioning of many factors in concert. Animal models mirroring human electrophysiology are essential to predict and understand the rare pro- and anti-arrhythmic effects of drugs. This is very well accomplished by the canine chronic atrioventricular block (CAVB) model. Here we summarize canine models for cardiovascular research, and describe the development of the CAVB model from its beginning. Understanding of the structural, contractile and electrical remodelling processes following atrioventricular (AV) block provides insight in the many factors contributing to drug-induced arrhythmia. We also review all safety pharmacology studies, efficacy and mechanistic studies on anti-arrhythmic drugs in CAVB dogs. Finally, we compare pros and cons with other in vivo preclinical animal models. In view of the tremendous amount of data obtained over the last 100 years from the CAVB dog model, it can be considered as man's best friend in preclinical drug research. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.


Assuntos
Bloqueio Atrioventricular , Animais , Antiarrítmicos , Arritmias Cardíacas , Bloqueio Atrioventricular/induzido quimicamente , Bloqueio Atrioventricular/tratamento farmacológico , Cães , Coração , Humanos
13.
Clin Toxicol (Phila) ; 59(11): 947-955, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34348072

RESUMO

Background Recreational use of nitrous oxide (N2O) is associated with many side effects, of which neurological complications are most common. Nitrous oxide abuse is also associated with psychiatric symptoms, but these have received less attention so far. Vitamin B12 deficiency may play a role in the development of these psychiatric symptoms.Aims To explore the relationship among the occurrence of recreational nitrous oxide-induced psychiatric symptoms, accompanying neurological symptoms, vitamin B12 status and choice of treatment.Methods A retrospective search for case reports was conducted across multiple databases (Pubmed, Embase, Web of Science, PsycINFO and CINAHL). Keywords included variants of "nitrous oxide", "case report" and "abuse". No restrictions to language or publication date were applied.Results The search retrieved 372 articles. A total of 25 case reports were included, representing 31 patients with psychiatric complications following nitrous oxide abuse. The most often reported symptoms were: hallucinations (n = 16), delusions (n = 11), and paranoia (n = 11). When neurological symptoms were present, patients were treated more frequently with vitamin B12 supplementation.Conclusions This review highlights the need to recognize that psychiatric symptoms may appear in association with nitrous oxide use. Approximately half of the cases that presented with nitrous oxide-induced psychiatric complaints did not show neurological symptoms, and their vitamin B12 concentration was often within the hospital's reference range. Psychiatrists and emergency physicians should be aware of isolated psychiatric symptoms caused by recreational nitrous oxide abuse. We suggest asking all patients with new psychiatric symptoms about nitrous oxide use and protocolizing the management of nitrous oxide-induced psychiatric symptoms.


Assuntos
Anestésicos Inalatórios/efeitos adversos , Transtornos Mentais/induzido quimicamente , Óxido Nitroso/efeitos adversos , Uso Recreativo de Drogas , Transtornos Relacionados ao Uso de Substâncias/complicações , Deficiência de Vitamina B 12/complicações , Administração por Inalação , Adolescente , Adulto , Anestésicos Inalatórios/administração & dosagem , Suplementos Nutricionais , Feminino , Humanos , Masculino , Transtornos Mentais/diagnóstico , Transtornos Mentais/psicologia , Transtornos Mentais/terapia , Pessoa de Meia-Idade , Óxido Nitroso/administração & dosagem , Prognóstico , Medição de Risco , Fatores de Risco , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Vitamina B 12/uso terapêutico , Deficiência de Vitamina B 12/diagnóstico , Deficiência de Vitamina B 12/tratamento farmacológico , Adulto Jovem
14.
Clin Toxicol (Phila) ; 59(10): 860-868, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34219550

RESUMO

CONTEXT: The black mamba (Dendroaspis polylepis) is, due to its extremely toxic venom, one of the most dangerous snake species in Sub-Saharan Africa. A D. polylepis bite is a medical emergency and requires adequate action to prevent severe complications. However, there are no comprehensive reviews available based on clinical cases, and no readily accessible guidelines for standardized treatment. Therefore, we aim to provide an overview regarding the currently available clinical literature on D. polylepis envenomations; in order to promote knowledge on symptomatology and treatment options. METHODS: We searched for cases reporting humans bitten by D. polylepis in PubMed, Embase, Scopus, and Sabinet. We searched the reference lists of all eligible articles for additional articles. After quality assessment, 29 cases were included in this review. We used descriptive analysis to create an overview of the collected parameters. DISCUSSION: Among the included case reports and case series, D. polylepis envenomations most frequently resulted in decreased respiratory function, sweating and paralysis. The onset of symptoms usually occurred within 60 minutes. Neurological symptoms occurred more often than symptoms of autonomic dysfunction. In the reported cases most patients (26/29) received antivenom and most survived (25/29). We recommend the reporting of additional structured case reports to improve future analyses on the clinical course of envenomations, in order to improve public health response to D. polylepis envenomations.


Assuntos
Antivenenos/uso terapêutico , Dendroaspis , Venenos Elapídicos/antagonistas & inibidores , Mordeduras de Serpentes/tratamento farmacológico , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Dendroaspis/metabolismo , Venenos Elapídicos/metabolismo , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mordeduras de Serpentes/diagnóstico , Mordeduras de Serpentes/metabolismo , Mordeduras de Serpentes/mortalidade , Resultado do Tratamento , Adulto Jovem
15.
Naunyn Schmiedebergs Arch Pharmacol ; 394(8): 1633-1640, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34244820

RESUMO

Publications baring falsified and fabricated images appear frequently in the primary literature. Industrialized forms of image forgery as practiced by the so-called paper mills worsen the current situation even further. Good education and awareness within the scientific society are essential to create an environment in which honesty and trust are the prime values in experimental research. Here I focus on the detection of publication fraud and provide some examples and advice. Finally, my views on the future of fraud detection and prevention are given.


Assuntos
Fraude/prevenção & controle , Editoração/normas , Pesquisa/normas , Humanos , Publicações Periódicas como Assunto/normas , Má Conduta Científica
16.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205607

RESUMO

The immature electrophysiology of human-induced pluripotent stem cell-derived cardiomyocytes (hiCMs) complicates their use for therapeutic and pharmacological purposes. An insufficient inward rectifying current (IK1) and the presence of a funny current (if) cause spontaneous electrical activity. This study tests the hypothesis that the co-culturing of hiCMs with a human embryonic kidney (HEK) cell-line expressing the Kir2.1 channel (HEK-IK1) can generate an electrical syncytium with an adult-like cardiac electrophysiology. The mechanical activity of co-cultures using different HEK-IK1:hiCM ratios was compared with co-cultures using wildtype (HEK-WT:hiCM) or hiCM alone on days 3-8 after plating. Only ratios of 1:3 and 1:1 showed a significant reduction in spontaneous rate at days 4 and 6, suggesting that IK1 was influencing the electrophysiology. Detailed analysis at day 4 revealed an increased incidence of quiescent wells or sub-areas. Electrical activity showed a decreased action potential duration (APD) at 20% and 50%, but not at 90%, alongside a reduced amplitude of the aggregate AP signal. A computational model of the 1:1 co-culture replicates the electrophysiological effects of HEK-WT. The addition of the IK1 conductance reduced the spontaneous rate and APD20, 50 and 90, and minor variation in the intercellular conductance caused quiescence. In conclusion, a 1:1 co-culture HEK-IK1:hiCM caused changes in electrophysiology and spontaneous activity consistent with the integration of IK1 into the electrical syncytium. However, the additional electrical effects of the HEK cell at 1:1 increased the possibility of electrical quiescence before sufficient IK1 was integrated into the syncytium.


Assuntos
Técnicas de Cocultura/métodos , Miócitos Cardíacos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Células Gigantes , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas , Contração Miocárdica
17.
Front Physiol ; 12: 642083, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981248

RESUMO

INTRODUCTION: Torsade de pointes arrhythmias (TdP) in the chronic atrioventricular block (CAVB) dog model result from proarrhythmic factors, which trigger TdP and/or reinforce the arrhythmic substrate. This study investigated electrophysiological and arrhythmogenic consequences of severe bradycardia for TdP. METHODS: Dofetilide (25 µg/kg per 5 min) was administered to eight anesthetized, idioventricular rhythm (IVR) remodeled CAVB dogs in two serial experiments: once under 60 beats per minute (bpm), right ventricular apex paced (RVA60) conditions, once under more bradycardic IVR conditions. Recordings included surface electrocardiogram and short-term variability (STV) of repolarization from endocardial unipolar electrograms. TdP inducibility (three or more episodes within 10 min after start of dofetilide) and arrhythmic activity scores (AS) were established. Mapping experiments in 10 additional dogs determined the effect of lowering rate on STV and spatial dispersion of repolarization (SDR) in baseline. RESULTS: IVR-tested animals had longer baseline RR-interval (1,403 ± 271 ms) and repolarization intervals than RVA60 animals. Dofetilide increased STV similarly under both rhythm strategies. Nevertheless, TdP inducibility and AS were higher under IVR conditions (6/8 and 37 ± 27 vs. 1/8 and 8 ± 12 in RVA60, respectively, both p < 0.05). Mapping: Pacing from high (128 ± 10 bpm) to middle (88 ± 10 bpm) to experimental rate (61 ± 3 bpm) increased all electrophysiological parameters, including interventricular dispersion, due to steeper left ventricular restitution curves, and intraventricular SDR: maximal cubic dispersion from 60 ± 14 (high) to 69 ± 17 (middle) to 84 ± 22 ms (p < 0.05 vs. high and middle rate). CONCLUSION: In CAVB dogs, severe bradycardia increases the probability and severity of arrhythmic events by heterogeneously causing electrophysiological instability, which is mainly reflected in an increased spatial, and to a lesser extent temporal, dispersion of repolarization.

18.
Front Pharmacol ; 12: 814066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095528

RESUMO

Introduction: DEND syndrome is a rare channelopathy characterized by a combination of developmental delay, epilepsy and severe neonatal diabetes. Gain of function mutations in the KCNJ11 gene, encoding the KIR6.2 subunit of the IKATP potassium channel, stand at the basis of most forms of DEND syndrome. In a previous search for existing drugs with the potential of targeting Cantú Syndrome, also resulting from increased IKATP, we found a set of candidate drugs that may also possess the potential to target DEND syndrome. In the current work, we combined Molecular Modelling including Molecular Dynamics simulations, with single cell patch clamp electrophysiology, in order to test the effect of selected drug candidates on the KIR6.2 WT and DEND mutant channels. Methods: Molecular dynamics simulations were performed to investigate potential drug binding sites. To conduct in vitro studies, KIR6.2 Q52R and L164P mutants were constructed. Inside/out patch clamp electrophysiology on transiently transfected HEK293T cells was performed for establishing drug-channel inhibition relationships. Results: Molecular Dynamics simulations provided insight in potential channel interaction and shed light on possible mechanisms of action of the tested drug candidates. Effective IKIR6.2/SUR2a inhibition was obtained with the pore-blocker betaxolol (IC50 values 27-37 µM). Levobetaxolol effectively inhibited WT and L164P (IC50 values 22 µM) and Q52R (IC50 55 µM) channels. Of the SUR binding prostaglandin series, travoprost was found to be the best blocker of WT and L164P channels (IC50 2-3 µM), while Q52R inhibition was 15-20% at 10 µM. Conclusion: Our combination of MD and inside-out electrophysiology provides the rationale for drug mediated IKATP inhibition, and will be the basis for 1) screening of additional existing drugs for repurposing to address DEND syndrome, and 2) rationalized medicinal chemistry to improve IKATP inhibitor efficacy and specificity.

19.
Front Physiol ; 12: 812572, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145427

RESUMO

Alteration of the inward rectifier current I K1, carried by KIR2.1 channels, affects action potential duration, impacts resting membrane stability and associates with cardiac arrhythmias. Congenital and acquired KIR2.1 malfunction frequently associates with aberrant ion channel trafficking. Cellular processes underlying trafficking are intertwined with cytoskeletal function. The extent to which the cytoskeleton is involved in KIR2.1 trafficking processes is unknown. We aimed to quantify the dependence of KIR2.1 trafficking on cytoskeleton function. GFP or photoconvertible Dendra2 tagged KIR2.1 constructs were transfected in HEK293 or HeLa cells. Photoconversion of the Dendra2 probe at the plasma membrane and subsequent live imaging of trafficking processes was performed by confocal laser-scanning microscopy. Time constant of green fluorescent recovery (τg,s) represented recruitment of new KIR2.1 at the plasma membrane. Red fluorescent decay (τr,s) represented internalization of photoconverted KIR2.1. Patch clamp electrophysiology was used to quantify I KIR2.1. Biochemical methods were used for cytoskeleton isolation and detection of KIR2.1-cytoskeleton interactions. Cytochalasin B (20 µM), Nocodazole (30 µM) and Dyngo-4a (10 nM) were used to modify the cytoskeleton. Chloroquine (10 µM, 24 h) was used to impair KIR2.1 breakdown. Cytochalasin B and Nocodazole, inhibitors of actin and tubulin filament formation respectively, strongly inhibited the recovery of green fluorescence at the plasma membrane suggestive for inhibition of KIR2.1 forward trafficking [τg,s 13 ± 2 vs. 131 ± 31* and 160 ± 40* min, for control, Cytochalasin B and Nocodazole, respectively (*p < 0.05 vs. control)]. Dyngo-4a, an inhibitor of dynamin motor proteins, strongly slowed the rate of photoconverted channel internalization, whereas Nocodazole and Cytochalasin B had less effect [τr,s 20 ± 2 vs. 87 ± 14*, 60 ± 16 and 64 ± 20 min (*p < 0.05 vs. control)]. Cytochalasin B treatment (20 µM, 24 h) inhibited I KIR2.1. Chloroquine treatment (10 µM, 24 h) induced intracellular aggregation of KIR2.1 channels and enhanced interaction with the actin/intermediate filament system (103 ± 90 fold; p < 0.05 vs. control). Functional actin and tubulin cytoskeleton systems are essential for forward trafficking of KIR2.1 channels, whereas initial backward trafficking relies on a functional dynamin system. Chronic disturbance of the actin system inhibits KIR2.1 currents. Internalized KIR2.1 channels become recruited to the cytoskeleton, presumably in lysosomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA