Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1403007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39183984

RESUMO

Prebiotics can modulate the gut microbial community composition and function for improved (gut) health and increase resilience against infections. In vitro models of the gut facilitate the study of intervention effects on the gut microbial community relevant to health. The mucosa-associated gut microbiota, which thrives in close contact with the host plays a pivotal role in colonization resistance and health. Therefore, we here introduce the Mi-screen, an experimental approach implementing a 96-well plate equipped with a mucus agar layer for the additional culturing of mucosa-associated microbiota in vitro. In this study, we screened the effects of 2'-Fucosyllactose (2'-FL), fructooligosaccharides (FOS), and inulin within a complex microbiota without and with infection with the C. difficile strains ATCC 43599 (Ribotype 001) or ATCC BAA-1870 (Ribotype 027). We analyzed the microbial community composition and short-chain fatty acid levels after 48 h of incubation. The inclusion of an additional substrate and surface in the form of the mucus agar layer allowed us to culture a microbial richness ranging between 100-160 in Chao index, with Shannon indices of 5-6 across culture conditions, indicative of a microbial diversity of physiological relevance. The mucus agar layer stimulated the growth of characteristic mucosa-associated bacteria such as Roseburia inulinovorans. The prebiotic interventions affected luminal and mucosal microbial communities cultured in vitro and stimulated short-chain fatty acid production. FOS, inulin and 2'-FL promoted the growth of Bifidobacterium adolescentis within the mucosa-associated microbiota cultured in vitro. When spiking the untreated conditions with pathogenic C. difficile, the strains thrived within the luminal and the mucosal sample types, whereas prebiotic treatments exhibited inhibitory effects on C. difficile growth and prevented colonization. In conclusion, the Mi-screen facilitates the screening of luminal and mucosa-associated gut microbial community dynamics in vitro and therefore fills an important gap in the field of in vitro modeling.

2.
Front Cell Infect Microbiol ; 12: 991150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389156

RESUMO

Background: Clostridioides difficile is a Gram-positive anaerobic bacterium that can produce the toxins TcdA and/or TcdB and is considered an opportunistic pathogen. C. difficile is mainly transmitted as endospores, which germinate to produce the pathogenic vegetative cells under suitable conditions in the gut. To efficiently screen novel therapeutic- interventions against the proliferation of C. difficile within a complex microbial community, platforms are needed that facilitate parallel experimentation. In order to allow for screening of novel interventions a medium-to-high throughput in vitro system is desirable. To this end, we have developed the 96-well CDi-screen platform that employs an adapted simulated ileal effluent medium (CDi-SIEM) and allows for culturing of pathogenic C. difficile. Methods: C. difficile strain ATCC 43599 was inoculated in the form of vegetative cells and spores into the CDi-screen in the presence and absence of a cultured fecal microbiota and incubated for 48h. To demonstrate its utility, we investigated the effect of the human milk oligosaccharide 2'-Fucosyllactose (2'-FL) at 4 and 8 mg/mL on C. difficile outgrowth and toxin production in the CDi-screen. The test conditions were sampled after 24 and 48 hours. C. difficile -specific primers were used to monitor C. difficile growth via qPCR and barcoded 16S rRNA gene amplicon sequencing facilitated the in-depth analysis of gut microbial community dynamics. Results: C. difficile ATCC 43599 proliferated in CDi-SIEM, both when inoculated as spores and as vegetative cells. The strain reached cell numbers expressed as C. difficile genome equivalents of up to 10 8 cells per mL after 24h of incubation. 2'-FL significantly inhibited the outgrowth of the ATTC 43599 strain within a complex human gut microbial community in the CDi-screen. In addition, a dose-dependent modulation of the gut microbial community composition by 2'-FL supplementation was detected, with a significant increase in the relative abundance of the genus Blautia in the presence of 2'-FL. Conclusion: The CDi-screen is suitable for studying C. difficile proliferation in a complex gut ecosystem and for screening for anti-pathogenic interventions that target C. difficile directly and/or indirectly through interactions with the gut microbiota. Different doses of compounds such as in this study the dose of the human milk oligosaccharide 2'-FL can be screened for efficacy in the inhibition of C. difficile proliferation.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Microbiota , Humanos , Clostridioides , RNA Ribossômico 16S/genética , Composição de Bases , Análise de Sequência de DNA , Filogenia , Infecções por Clostridium/microbiologia , Proliferação de Células
3.
Front Microbiol ; 13: 891790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770172

RESUMO

The pathogenic Clostridioides difficile and Clostridium perfringens are responsible for many health care-associated infections as well as systemic and enteric diseases. Therefore, they represent a major health threat to both humans and animals. Concerns regarding increasing antibiotic resistance (related to C. difficile and C. perfringens) have caused a surge in the pursual of novel strategies that effectively combat pathogenic infections, including those caused by both pathogenic species. The ban on antibiotic growth promoters in the poultry industry has added to the urgency of finding novel antimicrobial therapeutics for C. perfringens. These efforts have resulted in various therapeutics, of which bacteriophages (in short, phages) show much promise, as evidenced by the Eliava Phage Therapy Center in Tbilisi, Georgia (https://eptc.ge/). Bacteriophages are a type of virus that infect bacteria. In this review, the (clinical) impact of clostridium infections in intestinal diseases is recapitulated, followed by an analysis of the current knowledge and applicability of bacteriophages and phage-derived endolysins in this disease indication. Limitations of phage and phage endolysin therapy were identified and require considerations. These include phage stability in the gastrointestinal tract, influence on gut microbiota structure/function, phage resistance development, limited host range for specific pathogenic strains, phage involvement in horizontal gene transfer, and-for phage endolysins-endolysin resistance, -safety, and -immunogenicity. Methods to optimize features of these therapeutic modalities, such as mutagenesis and fusion proteins, are also addressed. The future success of phage and endolysin therapies require reliable clinical trial data for phage(-derived) products. Meanwhile, additional research efforts are essential to expand the potential of exploiting phages and their endolysins for mitigating the severe diseases caused by C. difficile and C. perfringens.

4.
J Hosp Infect ; 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34756844

RESUMO

BACKGROUND: Because of the enormous demand for personal protective equipment and especially respiratory protective devices (respirators) during the initial phase of the corona pandemic shortages arose. Sterilisation of used respirators can reduce these shortages. In our study, respirator testing was carried out after only one sterilisation cycle. AIM: To determine if steam sterilisation and reuse could be safely applied for used respirators. METHODS: In a cabinet an aqueous solution of NaCl (0.02% w/v) was nebulized and passed through a sample of the material of a respirator. Passing particle concentrations were measured directly from the cabinet and via the filter material of the respirator for particles ≥ 0.3 µm, ≥ 0.5 µm and ≥ 1.0 µm. FINDINGS: only three out of ten steam sterilised respirators met the requirements of 94% filtration efficiency. CONCLUSION: The results prove that heat sterilisation cannot be generically applied for reuse of respirators safely.

5.
Food Microbiol ; 79: 96-115, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30621881

RESUMO

Next Generation Sequencing (NGS) combined with powerful bioinformatic approaches are revolutionising food microbiology. Whole genome sequencing (WGS) of single isolates allows the most detailed comparison possible hitherto of individual strains. The two principle approaches for strain discrimination, single nucleotide polymorphism (SNP) analysis and genomic multi-locus sequence typing (MLST) are showing concordant results for phylogenetic clustering and are complementary to each other. Metabarcoding and metagenomics, applied to total DNA isolated from either food materials or the production environment, allows the identification of complete microbial populations. Metagenomics identifies the entire gene content and when coupled to transcriptomics or proteomics, allows the identification of functional capacity and biochemical activity of microbial populations. The focus of this review is on the recent use and future potential of NGS in food microbiology and on current challenges. Guidance is provided for new users, such as public health departments and the food industry, on the implementation of NGS and how to critically interpret results and place them in a broader context. The review aims to promote the broader application of NGS technologies within the food industry as well as highlight knowledge gaps and novel applications of NGS with the aim of driving future research and increasing food safety outputs from its wider use.


Assuntos
Microbiologia de Alimentos/normas , Microbiologia de Alimentos/tendências , Inocuidade dos Alimentos , Sequenciamento de Nucleotídeos em Larga Escala , Biologia Computacional , Indústria Alimentícia/instrumentação , Indústria Alimentícia/normas , Indústria Alimentícia/tendências , Microbiologia de Alimentos/instrumentação , Genômica , Tipagem de Sequências Multilocus , Polimorfismo de Nucleotídeo Único , Guias de Prática Clínica como Assunto , Análise de Sequência de DNA
6.
Nutrients ; 9(7)2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28718839

RESUMO

Lactulose, a disaccharide of galactose and fructose, used as a laxative or ammonia-lowering drug and as a functional food ingredient, enhances growth of Bifidobacterium and Lactobacillus at clinically relevant dosages. The prebiotic effect of subclinical dosages of Lactulose, however, remains to be elucidated. This study analyses changes in the microbiota and their metabolites after a 5 days Lactulose treatment using the TIM-2 system, a computer-controlled model of the proximal large intestine representing a complex, high density, metabolically active, anaerobic microbiota of human origin. Subclinical dosages of 2-5 g Lactulose were used. While 2 g Lactulose already increased the short-chain fatty acid levels of the intestinal content, 5 g Lactulose were required daily for 5 days in this study to exert the full beneficial prebiotic effect consisting of higher bacterial counts of Bifidobacterium, Lactobacillus, and Anaerostipes, a rise in acetate, butyrate and lactate, as well as a decrease in branched-chain fatty acids, pH (suggested by an increase in NaOH usage), and ammonia.


Assuntos
Intestino Grosso/efeitos dos fármacos , Lactulose/administração & dosagem , Modelos Biológicos , Prebióticos/administração & dosagem , Acetatos/metabolismo , Adulto , Amônia/metabolismo , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/metabolismo , Índice de Massa Corporal , Butiratos/metabolismo , Simulação por Computador , DNA Bacteriano/isolamento & purificação , Relação Dose-Resposta a Droga , Ácidos Graxos Voláteis/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Intestino Grosso/metabolismo , Intestino Grosso/microbiologia , Ácido Láctico/metabolismo , Lactobacillus/efeitos dos fármacos , Lactobacillus/metabolismo , Masculino , RNA Ribossômico 16S/isolamento & purificação , Análise de Sequência de DNA
7.
Appl Environ Microbiol ; 77(18): 6433-40, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21764948

RESUMO

A novel generic approach for stress profiling was applied to Listeria monocytogenes strain F2365. This food-borne pathogen was exposed to gradients of five different stresses of increasing intensity, typically ranging from moderate to lethal conditions. The stress factors included heat, acidic pH, a detergent disinfectant, an oxidant, and hyperosmotic conditions. In addition to CFU counts and lag time, five different molecular viability parameters were measured by fluorescence-based assays, including membrane integrity, membrane potential, esterase activity, redox activity, and intracellular pH stability. The last was measured by our recently invented real-time viability assay. Exposure to all stresses resulted in clear dose-response relationships for all viability parameters with the exception of hyperosmotic conditions. A statistical analysis showed strong correlations for (i) the growth parameters plate counts and lag times, (ii) the enzyme-associated functions redox and esterase activity, and (iii) the membrane-associated pH stability and membrane integrity. Results indicated a pronounced difference in the susceptibilities of the measured parameters depending on the stress factor applied. However, at relatively high stress intensities, all of the viability parameters became affected independent of the stress factor. Applications of the approach presented here include studies on the mechanism of action of unknown compounds with biocidal activity and a comparative analysis of the severities of the impact of stress conditions of interest. It appears that a meaningful evaluation of the impact of mild stress conditions can be obtained only through measurement of multiple viability parameters.


Assuntos
Microbiologia de Alimentos , Listeria monocytogenes/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Estresse Fisiológico , Desinfetantes/farmacologia , Temperatura Alta , Concentração de Íons de Hidrogênio , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/efeitos da radiação , Pressão Osmótica , Oxidantes/toxicidade , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA