Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
MAbs ; 15(1): 2256745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37698932

RESUMO

Biologic drug discovery pipelines are designed to deliver protein therapeutics that have exquisite functional potency and selectivity while also manifesting biophysical characteristics suitable for manufacturing, storage, and convenient administration to patients. The ability to use computational methods to predict biophysical properties from protein sequence, potentially in combination with high throughput assays, could decrease timelines and increase the success rates for therapeutic developability engineering by eliminating lengthy and expensive cycles of recombinant protein production and testing. To support development of high-quality predictive models for antibody developability, we designed a sequence-diverse panel of 83 effector functionless IgG1 antibodies displaying a range of biophysical properties, produced and formulated each protein under standard platform conditions, and collected a comprehensive package of analytical data, including in vitro assays and in vivo mouse pharmacokinetics. We used this robust training data set to build machine learning classifier models that can predict complex protein behavior from these data and features derived from predicted and/or experimental structures. Our models predict with 87% accuracy whether viscosity at 150 mg/mL is above or below a threshold of 15 centipoise (cP) and with 75% accuracy whether the area under the plasma drug concentration-time curve (AUC0-672 h) in normal mouse is above or below a threshold of 3.9 × 106 h x ng/mL.


Assuntos
Anticorpos Monoclonais , Descoberta de Drogas , Animais , Camundongos , Anticorpos Monoclonais/química , Simulação por Computador , Proteínas Recombinantes , Viscosidade
2.
Elife ; 82019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31860442

RESUMO

Loss of the RNA binding protein FMRP causes Fragile X Syndrome (FXS), the most common cause of inherited intellectual disability, yet it is unknown how FMRP function varies across brain regions and cell types and how this contributes to disease pathophysiology. Here we use conditional tagging of FMRP and CLIP (FMRP cTag CLIP) to examine FMRP mRNA targets in hippocampal CA1 pyramidal neurons, a critical cell type for learning and memory relevant to FXS phenotypes. Integrating these data with analysis of ribosome-bound transcripts in these neurons revealed CA1-enriched binding of autism-relevant mRNAs, and CA1-specific regulation of transcripts encoding circadian proteins. This contrasted with different targets in cerebellar granule neurons, and was consistent with circadian defects in hippocampus-dependent memory in Fmr1 knockout mice. These findings demonstrate differential FMRP-dependent regulation of mRNAs across neuronal cell types that may contribute to phenotypes such as memory defects and sleep disturbance associated with FXS.


Assuntos
Transtorno Autístico/metabolismo , Região CA1 Hipocampal/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Transtornos da Memória/genética , Células Piramidais/metabolismo , Animais , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Região CA1 Hipocampal/citologia , Cerebelo/citologia , Cerebelo/metabolismo , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/fisiopatologia , Regulação da Expressão Gênica , Humanos , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo
3.
Dev Neurobiol ; 78(3): 331-339, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314718

RESUMO

RNA localization to neuronal dendrites and axons is increasingly recognized as a significant and widespread mechanism of gene expression control in neurons. High-throughput RNA sequencing is rapidly expanding the universe of known localized mRNAs. Although there are inherent difficulties in preparing sequencing libraries from dendrites and axons in the context of intact brain, genetic labeling strategies have paved the way for improved studies of this type. As the list of localized mRNAs grows, there is increasing need for functional validation of localized transcripts-that is, do particular localized transcripts serve demonstrable physiologic functions in axons or dendrites? Finally, specific details about what localized mRNAs do once they reach distal processes have long been elusive. Recent work using single-molecule imaging and other techniques is starting to fill in the picture of how transcripts navigate the localized environment and undergo activity-dependent translational de-repression. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 331-339, 2018.


Assuntos
Neurônios/metabolismo , Transporte de RNA/fisiologia , Animais
4.
Cell ; 146(2): 247-61, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21784246

RESUMO

FMRP loss of function causes Fragile X syndrome (FXS) and autistic features. FMRP is a polyribosome-associated neuronal RNA-binding protein, suggesting that it plays a key role in regulating neuronal translation, but there has been little consensus regarding either its RNA targets or mechanism of action. Here, we use high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) to identify FMRP interactions with mouse brain polyribosomal mRNAs. FMRP interacts with the coding region of transcripts encoding pre- and postsynaptic proteins and transcripts implicated in autism spectrum disorders (ASD). We developed a brain polyribosome-programmed translation system, revealing that FMRP reversibly stalls ribosomes specifically on its target mRNAs. Our results suggest that loss of a translational brake on the synthesis of a subset of synaptic proteins contributes to FXS. In addition, they provide insight into the molecular basis of the cognitive and allied defects in FXS and ASD and suggest multiple targets for clinical intervention.


Assuntos
Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Ribossomos/metabolismo , Sinapses/metabolismo , Animais , Transtorno Autístico/fisiopatologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Humanos , Camundongos , Camundongos Knockout , Polirribossomos/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA , Análise de Sequência de RNA
5.
J Biol Chem ; 281(23): 15687-93, 2006 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16595661

RESUMO

Up-regulation of heme oxygenase (HO-1) by either cobalt protoporphyrin (CoPP) or human gene transfer improves vascular and renal function by several mechanisms, including increases in antioxidant levels and decreases in reactive oxygen species (ROS) in vascular and renal tissue. The purpose of the present study was to determine the effect of HO-1 overexpression on mitochondrial transporters, cytochrome c oxidase, and anti-apoptotic proteins in diabetic rats (streptozotocin, (STZ)-induced type 1 diabetes). Renal mitochondrial carnitine, deoxynucleotide, and ADP/ATP carriers were significantly reduced in diabetic compared with nondiabetic rats (p < 0.05). The citrate carrier was not significantly decreased in diabetic tissue. CoPP administration produced a robust increase in carnitine, citrate, deoxynucleotide, dicarboxylate, and ADP/ATP carriers and no significant change in oxoglutarate and aspartate/glutamate carriers. The increase in mitochondrial carriers (MCs) was associated with a significant increase in cytochrome c oxidase activity. The administration of tin mesoporphyrin (SnMP), an inhibitor of HO-1 activity, prevented the restoration of MCs in diabetic rats. Human HO-1 cDNA transfer into diabetic rats increased both HO-1 protein and activity, and restored mitochondrial ADP/ATP and deoxynucleotide carriers. The increase in HO-1 by CoPP administration was associated with a significant increase in the phosphorylation of AKT and levels of BcL-XL proteins. These observations in experimental diabetes suggest that the cytoprotective mechanism of HO-1 against oxidative stress involves an increase in the levels of MCs and anti-apoptotic proteins as well as in cytochrome c oxidase activity.


Assuntos
Proteínas de Transporte/metabolismo , Diabetes Mellitus Experimental/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Rim/metabolismo , Mitocôndrias/metabolismo , Animais , Diabetes Mellitus Experimental/enzimologia , Regulação Enzimológica da Expressão Gênica , Técnicas de Transferência de Genes , Heme Oxigenase (Desciclizante)/genética , Humanos , Rim/enzimologia , Mitocôndrias/enzimologia , Ratos , Ratos Sprague-Dawley , Estreptozocina
6.
J Biol Chem ; 281(6): 3743-51, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16339141

RESUMO

In most strains of Saccharomyces cerevisiae the mitochondrial gene COX1, for subunit 1 of cytochrome oxidase, contains multiple exons and introns. Processing of COX1 primary transcript requires accessory proteins factors, some of which are encoded by nuclear genes and others by reading frames residing in some of the introns of the COX1 and COB genes. Here we show that the low molecular weight protein product of open reading frame YLR204W, for which we propose the name COX24, is also involved in processing of COX1 RNA intermediates. The growth defect of cox24 mutants is partially rescued in strains harboring mitochondrial DNA lacking introns. Northern blot analyses of mitochondrial transcripts indicate cox24 null mutants to be blocked in processing of introns aI2 and aI3. The dependence of intron aI3 excision on Cox24p is also supported by the growth properties of the cox24 mutant harboring mitochondrial DNA with different intron compositions. The intermediate phenotype of the cox24 mutant in the background of intronless mitochondrial DNA, however, suggests that in addition to its role in splicing of the COX1 pre-mRNA, Cox24p still has another function. Based on the analysis of a cox14-cox24 double mutant, we propose that the other function of Cox24p is related to translation of the COX1 mRNA.


Assuntos
DNA Fúngico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Northern Blotting , Clonagem Molecular , DNA Mitocondrial/metabolismo , Epitopos/química , Genes Fúngicos , Hemaglutininas/química , Íntrons , Proteínas Mitocondriais/biossíntese , Dados de Sequência Molecular , Mutação , Fases de Leitura Aberta , Fenótipo , RNA/química , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA