Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Cell Rep Med ; 5(5): 101529, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703765

RESUMO

The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.


Assuntos
Estudo de Associação Genômica Ampla , Cabeça , Neoplasias , Humanos , Cabeça/anatomia & histologia , Neoplasias/genética , Neoplasias/patologia , Feminino , Masculino , Polimorfismo de Nucleotídeo Único/genética , Variação Genética , Tamanho do Órgão/genética , Transdução de Sinais/genética , Adulto , Predisposição Genética para Doença
2.
iScience ; 27(3): 109319, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38482500

RESUMO

The integration of neuroimaging with artificial intelligence is crucial for advancing the diagnosis of mental disorders. However, challenges arise from incomplete matching between diagnostic labels and neuroimaging. Here, we propose a label-noise filtering-based dimensional prediction (LAMP) method to identify reliable biomarkers and achieve accurate prediction for mental disorders. Our method proposes to utilize a label-noise filtering model to automatically filter out unclear cases from a neuroimaging perspective, and then the typical subjects whose diagnostic labels align with neuroimaging measures are used to construct a dimensional prediction model to score independent subjects. Using fMRI data of schizophrenia patients and healthy controls (n = 1,245), our method yields consistent scores to independent subjects, leading to more distinguishable relabeled groups with an enhanced classification accuracy of 31.89%. Additionally, it enables the exploration of stable abnormalities in schizophrenia. In summary, our LAMP method facilitates the identification of reliable biomarkers and accurate diagnosis of mental disorders using neuroimages.

3.
Brain Behav Immun ; 117: 70-79, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38169244

RESUMO

BACKGROUND: Choroid plexus (ChP) enlargement exists in first-episode and chronic psychosis, but whether enlargement occurs before psychosis onset is unknown. This study investigated whether ChP volume is enlarged in individuals with clinical high-risk (CHR) for psychosis and whether these changes are related to clinical, neuroanatomical, and plasma analytes. METHODS: Clinical and neuroimaging data from the North American Prodrome Longitudinal Study 2 (NAPLS2) was used for analysis. 509 participants (169 controls, 340 CHR) were recruited. Conversion status was determined after 2-years of follow-up, with 36 psychosis converters. The lateral ventricle ChP was manually segmented from baseline scans. A subsample of 31 controls and 53 CHR had plasma analyte and neuroimaging data. RESULTS: Compared to controls, CHR (d = 0.23, p = 0.017) and non-converters (d = 0.22, p = 0.03) demonstrated higher ChP volumes, but not in converters. In CHR, greater ChP volume correlated with lower cortical (r = -0.22, p < 0.001), subcortical gray matter (r = -0.21, p < 0.001), and total white matter volume (r = -0.28,p < 0.001), as well as larger lateral ventricle volume (r = 0.63,p < 0.001). Greater ChP volume correlated with makers functionally associated with the lateral ventricle ChP in CHR [CCL1 (r = -0.30, p = 0.035), ICAM1 (r = 0.33, p = 0.02)], converters [IL1ß (r = 0.66, p = 0.004)], and non-converters [BMP6 (r = -0.96, p < 0.001), CALB1 (r = -0.98, p < 0.001), ICAM1 (r = 0.80, p = 0.003), SELE (r = 0.59, p = 0.026), SHBG (r = 0.99, p < 0.001), TNFRSF10C (r = 0.78, p = 0.001)]. CONCLUSIONS: CHR and non-converters demonstrated significantly larger ChP volumes compared to controls. Enlarged ChP was associated with neuroanatomical alterations and analyte markers functionally associated with the ChP. These findings suggest that the ChP may be a key an important biomarker in CHR.


Assuntos
Plexo Corióideo , Transtornos Psicóticos , Humanos , Plexo Corióideo/diagnóstico por imagem , Estudos Longitudinais , Fenótipo , Transtornos Psicóticos/diagnóstico por imagem , Neuroimagem
4.
Biol Psychiatry ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38070846

RESUMO

BACKGROUND: Schizophrenia research reveals sex differences in incidence, symptoms, genetic risk factors, and brain function. However, a knowledge gap remains regarding sex-specific schizophrenia alterations in brain function. Schizophrenia is considered a dysconnectivity syndrome, but the dynamic integration and segregation of brain networks are poorly understood. Recent advances in resting-state functional magnetic resonance imaging allow us to study spatial dynamics, the phenomenon of brain networks spatially evolving over time. Nevertheless, estimating time-resolved networks remains challenging due to low signal-to-noise ratio, limited short-time information, and uncertain network identification. METHODS: We adapted a reference-informed network estimation technique to capture time-resolved networks and their dynamic spatial integration and segregation for 193 individuals with schizophrenia and 315 control participants. We focused on time-resolved spatial functional network connectivity, an estimate of network spatial coupling, to study sex-specific alterations in schizophrenia and their links to genomic data. RESULTS: Our findings are consistent with the dysconnectivity and neurodevelopment hypotheses and with the cerebello-thalamo-cortical, triple-network, and frontoparietal dysconnectivity models, helping to unify them. The potential unification offers a new understanding of the underlying mechanisms. Notably, the posterior default mode/salience spatial functional network connectivity exhibits sex-specific schizophrenia alteration during the state with the highest global network integration and is correlated with genetic risk for schizophrenia. This dysfunction is reflected in regions with weak functional connectivity to corresponding networks. CONCLUSIONS: Our method can effectively capture spatially dynamic networks, detect nuanced schizophrenia effects including sex-specific ones, and reveal the intricate relationship of dynamic information to genomic data. The results also underscore the clinical potential of dynamic spatial dependence and weak connectivity.

5.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014169

RESUMO

Functional magnetic resonance imaging (fMRI) studies often estimate brain intrinsic connectivity networks (ICNs) from temporal relationships between hemodynamic signals using approaches such as independent component analysis (ICA). While ICNs are thought to represent functional sources that play important roles in various psychological phenomena, current approaches have been tailored to identify ICNs that mainly reflect linear statistical relationships. However, the elements comprising neural systems often exhibit remarkably complex nonlinear interactions that may be involved in cognitive operations and altered in psychiatric conditions such as schizophrenia. Consequently, there is a need to develop methods capable of effectively capturing ICNs from measures that are sensitive to nonlinear relationships. Here, we advance a novel approach to estimate ICNs from explicitly nonlinear whole-brain functional connectivity (ENL-wFC) by transforming resting-state fMRI (rsfMRI) data into the connectivity domain, allowing us to capture unique information from distance correlation patterns that would be missed by linear whole-brain functional connectivity (LIN-wFC) analysis. Our findings provide evidence that ICNs commonly extracted from linear (LIN) relationships are also reflected in explicitly nonlinear (ENL) connectivity patterns. ENL ICN estimates exhibit higher reliability and stability, highlighting our approach's ability to effectively quantify ICNs from rsfMRI data. Additionally, we observed a consistent spatial gradient pattern between LIN and ENL ICNs with higher ENL weight in core ICN regions, suggesting that ICN function may be subserved by nonlinear processes concentrated within network centers. We also found that a uniquely identified ENL ICN distinguished individuals with schizophrenia from healthy controls while a uniquely identified LIN ICN did not, emphasizing the valuable complementary information that can be gained by incorporating measures that are sensitive to nonlinearity in future analyses. Moreover, the ENL estimates of ICNs associated with auditory, linguistic, sensorimotor, and self-referential processes exhibit heightened sensitivity towards differentiating between individuals with schizophrenia and controls compared to LIN counterparts, demonstrating the translational value of our approach and of the ENL estimates of ICNs that are frequently reported as disrupted in schizophrenia. In summary, our findings underscore the tremendous potential of connectivity domain ICA and nonlinear information in resolving complex brain phenomena and revolutionizing the landscape of clinical FC analysis.

6.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37786683

RESUMO

Despite increasing interest in the dynamics of functional brain networks, most studies focus on the changing relationships over time between spatially static networks or regions. Here we propose an approach to study dynamic spatial brain net-works in human resting state functional magnetic resonance imaging (rsfMRI) data and evaluate the temporal changes in the volumes of these 4D networks. Our results show significant volumetric coupling (i.e., synchronized shrinkage and growth) between networks during the scan. We find that several features of such dynamic spatial brain networks are associated with cognition, with higher dynamic variability in these networks and higher volumetric coupling between network pairs positively associated with cognitive performance. We show that these networks are modulated differently in individuals with schizophrenia versus typical controls, resulting in network growth or shrinkage, as well as altered focus of activity within a network. Schizophrenia also shows lower spatial dynamical variability in several networks, and lower volumetric coupling between pairs of networks, thus upholding the role of dynamic spatial brain networks in cognitive impairment seen in schizophrenia. Our data show evidence for the importance of studying the typically overlooked voxelwise changes within and between brain networks.

7.
Psychiatry Res Neuroimaging ; 335: 111710, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690161

RESUMO

Individuals with schizophrenia (SZ) show aberrant activations, assessed via functional magnetic resonance imaging (fMRI), during auditory oddball tasks. However, associations with cognitive performance and genetic contributions remain unknown. This study compares individuals with SZ to healthy volunteers (HVs) using two cross-sectional data sets from multi-center brain imaging studies. It examines brain activation to auditory oddball targets, and their associations with cognitive domain performance, schizophrenia polygenic risk scores (PRS), and genetic variation (loci). Both sample 1 (137 SZ vs. 147 HV) and sample 2 (91 SZ vs. 98 HV), showed hypoactivation in SZ in the left-frontal pole, and right frontal orbital, frontal pole, paracingulate, intracalcarine, precuneus, supramarginal and hippocampal cortices, and right thalamus. In SZ, precuneus activity was positively related to cognitive performance. Schizophrenia PRS showed a negative correlation with brain activity in the right-supramarginal cortex. GWA analyses revealed significant single-nucleotide polymorphisms associated with right-supramarginal gyrus activity. RPL36 also predicted right-supramarginal gyrus activity. In addition to replicating hypoactivation for oddball targets in SZ, this study identifies novel relationships between regional activity, cognitive performance, and genetic loci that warrant replication, emphasizing the need for continued data sharing and collaborative efforts.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Esquizofrenia/complicações , Estudos Transversais , Encéfalo , Córtex Cerebral , Lobo Frontal
8.
Mol Psychiatry ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37537281

RESUMO

Differential diagnosis is sometimes difficult in practical psychiatric settings, in terms of using the current diagnostic system based on presenting symptoms and signs. The creation of a novel diagnostic system using objective biomarkers is expected to take place. Neuroimaging studies and others reported that subcortical brain structures are the hubs for various psycho-behavioral functions, while there are so far no neuroimaging data-driven clinical criteria overcoming limitations of the current diagnostic system, which would reflect cognitive/social functioning. Prior to the main analysis, we conducted a large-scale multisite study of subcortical volumetric and lateralization alterations in schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorder using T1-weighted images of 5604 subjects (3078 controls and 2526 patients). We demonstrated larger lateral ventricles volume in schizophrenia, bipolar disorder, and major depressive disorder, smaller hippocampus volume in schizophrenia and bipolar disorder, and schizophrenia-specific smaller amygdala, thalamus, and accumbens volumes and larger caudate, putamen, and pallidum volumes. In addition, we observed a leftward alteration of lateralization for pallidum volume specifically in schizophrenia. Moreover, as our main objective, we clustered the 5,604 subjects based on subcortical volumes, and explored whether data-driven clustering results can explain cognitive/social functioning in the subcohorts. We showed a four-biotype classification, namely extremely (Brain Biotype [BB] 1) and moderately smaller limbic regions (BB2), larger basal ganglia (BB3), and normal volumes (BB4), being associated with cognitive/social functioning. Specifically, BB1 and BB2-3 were associated with severe and mild cognitive/social impairment, respectively, while BB4 was characterized by normal cognitive/social functioning. Our results may lead to the future creation of novel biological data-driven psychiatric diagnostic criteria, which may be expected to be useful for prediction or therapeutic selection.

9.
Front Neuroinform ; 17: 1174156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533796

RESUMO

The biomedical research community is motivated to share and reuse data from studies and projects by funding agencies and publishers. Effectively combining and reusing neuroimaging data from publicly available datasets, requires the capability to query across datasets in order to identify cohorts that match both neuroimaging and clinical/behavioral data criteria. Critical barriers to operationalizing such queries include, in part, the broad use of undefined study variables with limited or no annotations that make it difficult to understand the data available without significant interaction with the original authors. Using the Brain Imaging Data Structure (BIDS) to organize neuroimaging data has made querying across studies for specific image types possible at scale. However, in BIDS, beyond file naming and tightly controlled imaging directory structures, there are very few constraints on ancillary variable naming/meaning or experiment-specific metadata. In this work, we present NIDM-Terms, a set of user-friendly terminology management tools and associated software to better manage individual lab terminologies and help with annotating BIDS datasets. Using these tools to annotate BIDS data with a Neuroimaging Data Model (NIDM) semantic web representation, enables queries across datasets to identify cohorts with specific neuroimaging and clinical/behavioral measurements. This manuscript describes the overall informatics structures and demonstrates the use of tools to annotate BIDS datasets to perform integrated cross-cohort queries.

10.
Mol Psychiatry ; 28(11): 4915-4923, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37596354

RESUMO

According to the operational diagnostic criteria, psychiatric disorders such as schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD), and autism spectrum disorder (ASD) are classified based on symptoms. While its cluster of symptoms defines each of these psychiatric disorders, there is also an overlap in symptoms between the disorders. We hypothesized that there are also similarities and differences in cortical structural neuroimaging features among these psychiatric disorders. T1-weighted magnetic resonance imaging scans were performed for 5,549 subjects recruited from 14 sites. Effect sizes were determined using a linear regression model within each protocol, and these effect sizes were meta-analyzed. The similarity of the differences in cortical thickness and surface area of each disorder group was calculated using cosine similarity, which was calculated from the effect sizes of each cortical regions. The thinnest cortex was found in SZ, followed by BD and MDD. The cosine similarity values between disorders were 0.943 for SZ and BD, 0.959 for SZ and MDD, and 0.943 for BD and MDD, which indicated that a common pattern of cortical thickness alterations was found among SZ, BD, and MDD. Additionally, a generally smaller cortical surface area was found in SZ and MDD than in BD, and the effect was larger in SZ. The cosine similarity values between disorders were 0.945 for SZ and MDD, 0.867 for SZ and ASD, and 0.811 for MDD and ASD, which indicated a common pattern of cortical surface area alterations among SZ, MDD, and ASD. Patterns of alterations in cortical thickness and surface area were revealed in the four major psychiatric disorders. To our knowledge, this is the first report of a cross-disorder analysis conducted on four major psychiatric disorders. Cross-disorder brain imaging research can help to advance our understanding of the pathogenesis of psychiatric disorders and common symptoms.


Assuntos
Transtorno do Espectro Autista , Transtorno Bipolar , Transtorno Depressivo Maior , Transtornos Mentais , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Transtornos Mentais/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Imageamento por Ressonância Magnética/métodos
11.
Mol Psychiatry ; 28(10): 4363-4373, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37644174

RESUMO

Converging evidence suggests that schizophrenia (SZ) with primary, enduring negative symptoms (i.e., Deficit SZ (DSZ)) represents a distinct entity within the SZ spectrum while the neurobiological underpinnings remain undetermined. In the largest dataset of DSZ and Non-Deficit (NDSZ), we conducted a meta-analysis of data from 1560 individuals (168 DSZ, 373 NDSZ, 1019 Healthy Controls (HC)) and a mega-analysis of a subsampled data from 944 individuals (115 DSZ, 254 NDSZ, 575 HC) collected across 9 worldwide research centers of the ENIGMA SZ Working Group (8 in the mega-analysis), to clarify whether they differ in terms of cortical morphology. In the meta-analysis, sites computed effect sizes for differences in cortical thickness and surface area between SZ and control groups using a harmonized pipeline. In the mega-analysis, cortical values of individuals with schizophrenia and control participants were analyzed across sites using mixed-model ANCOVAs. The meta-analysis of cortical thickness showed a converging pattern of widespread thinner cortex in fronto-parietal regions of the left hemisphere in both DSZ and NDSZ, when compared to HC. However, DSZ have more pronounced thickness abnormalities than NDSZ, mostly involving the right fronto-parietal cortices. As for surface area, NDSZ showed differences in fronto-parietal-temporo-occipital cortices as compared to HC, and in temporo-occipital cortices as compared to DSZ. Although DSZ and NDSZ show widespread overlapping regions of thinner cortex as compared to HC, cortical thinning seems to better typify DSZ, being more extensive and bilateral, while surface area alterations are more evident in NDSZ. Our findings demonstrate for the first time that DSZ and NDSZ are characterized by different neuroimaging phenotypes, supporting a nosological distinction between DSZ and NDSZ and point toward the separate disease hypothesis.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Imageamento por Ressonância Magnética , Neuroimagem , Lobo Parietal , Síndrome , Córtex Cerebral/diagnóstico por imagem
12.
Front Neuroimaging ; 2: 1097523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554628

RESUMO

Schizophrenia is a severe brain disorder with serious symptoms including delusions, disorganized speech, and hallucinations that can have a long-term detrimental impact on different aspects of a patient's life. It is still unclear what the main cause of schizophrenia is, but a combination of altered brain connectivity and structure may play a role. Neuroimaging data has been useful in characterizing schizophrenia, but there has been very little work focused on voxel-wise changes in multiple brain networks over time, despite evidence that functional networks exhibit complex spatiotemporal changes over time within individual subjects. Recent studies have primarily focused on static (average) features of functional data or on temporal variations between fixed networks; however, such approaches are not able to capture multiple overlapping networks which change at the voxel level. In this work, we employ a deep residual convolutional neural network (CNN) model to extract 53 different spatiotemporal networks each of which captures dynamism within various domains including subcortical, cerebellar, visual, sensori-motor, auditory, cognitive control, and default mode. We apply this approach to study spatiotemporal brain dynamism at the voxel level within multiple functional networks extracted from a large functional magnetic resonance imaging (fMRI) dataset of individuals with schizophrenia (N = 708) and controls (N = 510). Our analysis reveals widespread group level differences across multiple networks and spatiotemporal features including voxel-wise variability, magnitude, and temporal functional network connectivity in widespread regions expected to be impacted by the disorder. We compare with typical average spatial amplitude and show highly structured and neuroanatomically relevant results are missed if one does not consider the voxel-wise spatial dynamics. Importantly, our approach can summarize static, temporal dynamic, spatial dynamic, and spatiotemporal dynamics features, thus proving a powerful approach to unify and compare these various perspectives. In sum, we show the proposed approach highlights the importance of accounting for both temporal and spatial dynamism in whole brain neuroimaging data generally, shows a high-level of sensitivity to schizophrenia highlighting global but spatially unique dynamics showing group differences, and may be especially important in studies focused on the development of brain-based biomarkers.

13.
bioRxiv ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37461731

RESUMO

Schizophrenia (SZ) is a complex psychiatric disorder that is currently defined by symptomatic and behavioral, rather than biological, criteria. Neuroimaging is an appealing avenue for SZ biomarker development, as several neuroimaging-based studies comparing individuals with SZ to healthy controls (HC) have shown measurable group differences in brain structure, as well as functional brain alterations in both static and dynamic functional network connectivity (sFNC and dFNC, respectively). The recently proposed filter-banked connectivity (FBC) method extends the standard dFNC sliding-window approach to estimate FNC within an arbitrary number of distinct frequency bands. The initial implementation used a set of filters spanning the full connectivity spectral range, providing a unified approach to examine both sFNC and dFNC in a single analysis. Initial FBC results found that individuals with SZ spend more time in a less structured, more disconnected low-frequency (i.e., static) FNC state than HC, as well as preferential SZ occupancy in high-frequency connectivity states, suggesting a frequency-specific component underpinning the functional dysconnectivity observed in SZ. Building on these findings, we sought to link such frequency-specific patterns of FNC to covarying data-driven structural brain networks in the context of SZ. Specifically, we employ a multi-set canonical correlation analysis + joint independent components analysis (mCCA + jICA) data fusion framework to study the connection between grey matter volume (GMV) maps and FBC states across the full connectivity frequency spectrum. Our multimodal analysis identified two joint sources that captured co-varying patterns of frequency-specific functional connectivity and alterations in GMV with significant group differences in loading parameters between the SZ group and HC. The first joint source linked frequency-modulated connections between the subcortical and sensorimotor networks and GMV alterations in the frontal and temporal lobes, while the second joint source identified a relationship between low-frequency cerebellar-sensorimotor connectivity and structural changes in both the cerebellum and motor cortex. Together, these results show a strong connection between cortico-subcortical functional connectivity at both high and low frequencies and alterations in cortical GMV that may be relevant to the pathogenesis and pathophysiology of SZ.

14.
medRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333179

RESUMO

Formal thought disorder (FTD) is a key clinical factor in schizophrenia, but the neurobiological underpinnings remain unclear. In particular, relationship between FTD symptom dimensions and patterns of regional brain volume deficiencies in schizophrenia remain to be established in large cohorts. Even less is known about the cellular basis of FTD. Our study addresses these major obstacles based on a large multi-site cohort through the ENIGMA Schizophrenia Working Group (752 individuals with schizophrenia and 1256 controls), to unravel the neuroanatomy of positive, negative and total FTD in schizophrenia and their cellular bases. We used virtual histology tools to relate brain structural changes associated with FTD to cellular distributions in cortical regions. We identified distinct neural networks for positive and negative FTD. Both networks encompassed fronto-occipito-amygdalar brain regions, but negative FTD showed a relative sparing of orbitofrontal cortical thickness, while positive FTD also affected lateral temporal cortices. Virtual histology identified distinct transcriptomic fingerprints associated for both symptom dimensions. Negative FTD was linked to neuronal and astrocyte fingerprints, while positive FTD was also linked to microglial cell types. These findings relate different dimensions of FTD to distinct brain structural changes and their cellular underpinnings, improve our mechanistic understanding of these key psychotic symptoms.

15.
Neuroimage Clin ; 38: 103434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37209635

RESUMO

Brain functional networks identified from resting functional magnetic resonance imaging (fMRI) data have the potential to reveal biomarkers for brain disorders, but studies of complex mental illnesses such as schizophrenia (SZ) often yield mixed results across replication studies. This is likely due in part to the complexity of the disorder, the short data acquisition time, and the limited ability of the approaches for brain imaging data mining. Therefore, the use of analytic approaches which can both capture individual variability while offering comparability across analyses is highly preferred. Fully blind data-driven approaches such as independent component analysis (ICA) are hard to compare across studies, and approaches that use fixed atlas-based regions can have limited sensitivity to individual sensitivity. By contrast, spatially constrained ICA (scICA) provides a hybrid, fully automated solution that can incorporate spatial network priors while also adapting to new subjects. However, scICA has thus far only been used with a single spatial scale (ICA dimensionality, i.e., ICA model order). In this work, we present an approach using multi-objective optimization scICA with reference algorithm (MOO-ICAR) to extract subject-specific intrinsic connectivity networks (ICNs) from fMRI data at multiple spatial scales, which also enables us to study interactions across spatial scales. We evaluate this approach using a large N (N > 1,600) study of schizophrenia divided into separate validation and replication sets. A multi-scale ICN template was estimated and labeled, then used as input into scICA which was computed on an individual subject level. We then performed a subsequent analysis of multiscale functional network connectivity (msFNC) to evaluate the patient data, including group differences and classification. Results showed highly consistent group differences in msFNC in regions including cerebellum, thalamus, and motor/auditory networks. Importantly, multiple msFNC pairs linking different spatial scales were implicated. The classification model built on the msFNC features obtained up to 85% F1 score, 83% precision, and 88% recall, indicating the strength of the proposed framework in detecting group differences between schizophrenia and the control group. Finally, we evaluated the relationship of the identified patterns to positive symptoms and found consistent results across datasets. The results verified the robustness of our framework in evaluating brain functional connectivity of schizophrenia at multiple spatial scales, implicated consistent and replicable brain networks, and highlighted a promising approach for leveraging resting fMRI data for brain biomarker development.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Cerebelo , Biomarcadores
17.
Hum Brain Mapp ; 44(6): 2620-2635, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36840728

RESUMO

Resting-state functional network connectivity (rsFNC) has shown utility for identifying characteristic functional brain patterns in individuals with psychiatric and mood disorders, providing a promising avenue for biomarker development. However, several factors have precluded widespread clinical adoption of rsFNC diagnostics, namely a lack of standardized approaches for capturing comparable and reproducible imaging markers across individuals, as well as the disagreement on the amount of data required to robustly detect intrinsic connectivity networks (ICNs) and diagnostically relevant patterns of rsFNC at the individual subject level. Recently, spatially constrained independent component analysis (scICA) has been proposed as an automated method for extracting ICNs standardized to a chosen network template while still preserving individual variation. Leveraging the scICA methodology, which solves the former challenge of standardized neuroimaging markers, we investigate the latter challenge of identifying a minimally sufficient data length for clinical applications of resting-state fMRI (rsfMRI). Using a dataset containing rsfMRI scans of individuals with schizophrenia and controls (M = 310) as well as simulated rsfMRI, we evaluated the robustness of ICN and rsFNC estimates at both the subject- and group-level, as well as the performance of diagnostic classification, with respect to the length of the rsfMRI time course. We found individual estimates of ICNs and rsFNC from the full-length (5 min) reference time course were sufficiently approximated with just 3-3.5 min of data (r = 0.85, 0.88, respectively), and significant differences in group-average rsFNC could be sufficiently approximated with even less data, just 2 min (r = 0.86). These results from the shorter clinical data were largely consistent with the results from validation experiments using longer time series from both simulated (30 min) and real-world (14 min) datasets, in which estimates of subject-level FNC were reliably estimated with 3-5 min of data. Moreover, in the real-world data we found rsFNC and ICN estimates generated across the full range of data lengths (0.5-14 min) more reliably matched those generated from the first 5 min of scan time than those generated from the last 5 min, suggesting increased influence of "late scan" noise factors such as fatigue or drowsiness may limit the reliability of FNC from data collected after 10+ min of scan time, further supporting the notion of shorter scans. Lastly, a diagnostic classification model trained on just 2 min of data retained 97%-98% classification accuracy relative to that of the full-length reference model. Our results suggest that, when decomposed with scICA, rsfMRI scans of just 2-5 min show good clinical utility without significant loss of individual FNC information of longer scan lengths.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Neuroimagem , Transtornos do Humor , Mapeamento Encefálico/métodos
18.
Psychiatry Res Neuroimaging ; 329: 111597, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36680843

RESUMO

This study examined associations between resting-state amplitude of low frequency fluctuations (ALFF) and negative symptoms represented by total scores, second-order dimension (motivation and pleasure, expressivity), and first-order domain (anhedonia, avolition, asociality, alogia, blunted affect) factor scores in schizophrenia (n = 57). Total negative symptom scores showed positive associations with ALFF in temporal and frontal brain regions. Negative symptom domain scores showed predominantly stronger associations with regional ALFF compared to total scores, suggesting domain scores may better map to neural signatures than total scores. Improving our understanding of the neuropathology underlying negative symptoms may aid in addressing this unmet therapeutic need in schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Anedonia , Encéfalo/diagnóstico por imagem , Transtornos do Humor , Motivação
19.
Hum Brain Mapp ; 44(2): 509-522, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36574598

RESUMO

Characterizing neuropsychiatric disorders is challenging due to heterogeneity in the population. We propose combining structural and functional neuroimaging and genomic data in a multimodal classification framework to leverage their complementary information. Our objectives are two-fold (i) to improve the classification of disorders and (ii) to introspect the concepts learned to explore underlying neural and biological mechanisms linked to mental disorders. Previous multimodal studies have focused on naïve neural networks, mostly perceptron, to learn modality-wise features and often assume equal contribution from each modality. Our focus is on the development of neural networks for feature learning and implementing an adaptive control unit for the fusion phase. Our mid fusion with attention model includes a multilayer feed-forward network, an autoencoder, a bi-directional long short-term memory unit with attention as the features extractor, and a linear attention module for controlling modality-specific influence. The proposed model acquired 92% (p < .0001) accuracy in schizophrenia prediction, outperforming several other state-of-the-art models applied to unimodal or multimodal data. Post hoc feature analyses uncovered critical neural features and genes/biological pathways associated with schizophrenia. The proposed model effectively combines multimodal neuroimaging and genomics data for predicting mental disorders. Interpreting salient features identified by the model may advance our understanding of their underlying etiological mechanisms.


Assuntos
Transtornos Mentais , Esquizofrenia , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Redes Neurais de Computação , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética
20.
IEEE J Biomed Health Inform ; 27(1): 215-226, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36201411

RESUMO

Feature selection can disclose biomarkers of mental disorders that have unclear biological mechanisms. Although neighborhood rough set (NRS) has been applied to discover important sparse features, it has hardly ever been utilized in neuroimaging-based biomarker identification, probably due to the inadequate feature evaluation metric and incomplete information provided under a single-granularity. Here, we propose a new NRS-based feature selection method and successfully identify brain functional connectivity biomarkers of schizophrenia (SZ) using functional magnetic resonance imaging (fMRI) data. Specifically, we develop a new weighted metric based on NRS combined with information entropy to evaluate the capacity of features in distinguishing different groups. Inspired by multi-granularity information maximization theory, we further take advantage of the complementary information from different neighborhood sizes via a multi-granularity fusion to obtain the most discriminative and stable features. For validation, we compare our method with six popular feature selection methods using three public omics datasets as well as resting-state fMRI data of 393 SZ patients and 429 healthy controls. Results show that our method obtained higher classification accuracies on both omics data (100.0%, 88.6%, and 72.2% for three omics datasets, respectively) and fMRI data (93.9% for main dataset, and 76.3% and 83.8% for two independent datasets, respectively). Moreover, our findings reveal biologically meaningful substrates of SZ, notably involving the connectivity between the thalamus and superior temporal gyrus as well as between the postcentral gyrus and calcarine gyrus. Taken together, we propose a new NRS-based feature selection method that shows the potential of exploring effective and sparse neuroimaging-based biomarkers of mental disorders.


Assuntos
Esquizofrenia , Humanos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA