RESUMO
Background: The severity of Severe Acute Respiratory Syndrome Coronavirus 2 infection varies with age and time. Here, we quantify how age-specific risks of hospitalization, intensive care unit (ICU) admission, and death upon infection changed from February 2020 to June 2021 in the Netherlands. Methods: A series of large representative serology surveys allowed us to estimate age-specific numbers of infections in three epidemic periods (late-February 2020 to mid-June 2020, mid-June 2020 to mid-February 2021, and mid-February 2021 to late-June 2021). We accounted for reinfections and breakthrough infections. Severity measures were obtained by combining infection numbers with age-specific numbers of hospitalization, ICU admission, and excess all-cause deaths. Results: There was an accelerating, almost exponential, increase in severity with age in each period. The rate of increase with age was the highest for death and the lowest for hospitalization. In late-February 2020 to mid-June 2020, the overall risk of hospitalization upon infection was 1.5% (95% confidence interval [CI] 1.3-1.8%), the risk of ICU admission was 0.36% (95% CI: 0.31-0.42%), and the risk of death was 1.2% (95% CI: 1.0-1.4%). The risk of hospitalization was significantly increased in mid-June 2020 to mid-February 2021, while the risk of ICU admission remained stable over time. The risk of death decreased over time, with a significant drop among ≥70-years-olds in mid-February 2021 to late-June 2021; COVID-19 vaccination started early January 2021. Conclusion: Whereas the increase in severity of Severe Acute Respiratory Syndrome Coronavirus 2 with age remained stable, the risk of death upon infection decreased over time. A significant drop in risk of death among elderly coincided with the introduction of COVID-19 vaccination.
Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Humanos , COVID-19/epidemiologia , Países Baixos/epidemiologia , Vacinas contra COVID-19 , Fatores EtáriosRESUMO
Background: Despite the known relatively high disease burden of influenza, data are lacking regarding a critical epidemiological indicator, the case-fatality ratio. Our objective was to infer age-group and influenza (sub)type specific values by combining modelled estimates of symptomatic incidence and influenza-attributable mortality. Methods: The setting was the Netherlands, 2011/2012 through 2019/2020 seasons. Sentinel surveillance data from general practitioners and laboratory testing were synthesised to supply age-group specific estimates of incidence of symptomatic infection, and ecological additive modelling was used to estimate influenza-attributable deaths. These were combined in an Bayesian inferential framework to estimate case-fatality ratios for influenza A(H3N2), A(H1N1)pdm09 and influenza B, per 5-year age-group. Results: Case-fatality estimates were highest for influenza A(H3N2) followed by influenza B and then A(H1N1)pdm09 and were highest for the 85+ years age-group, at 4.76% (95% credible interval [CrI]: 4.52-5.01%) for A(H3N2), followed by influenza B at 4.08% (95% CrI: 3.77-4.39%) and A(H1N1)pdm09 at 2.51% (95% CrI: 2.09-2.94%). For 55-59 through 85+ years, the case-fatality risk was estimated to double with every 3.7 years of age. Conclusions: These estimated case-fatality ratios, per influenza sub(type) and per age-group, constitute valuable information for public health decision-making, for assessing the retrospective and prospective value of preventative interventions such as vaccination and for health economic evaluations.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H3N2 , Estações do Ano , Países Baixos/epidemiologia , Estudos Retrospectivos , Teorema de Bayes , Estudos ProspectivosRESUMO
BackgroundTimely treatment with neuraminidase inhibitors (NAI) can reduce severe outcomes in influenza patients.AimWe assessed the impact of antiviral treatment on in-hospital deaths of laboratory-confirmed influenza patients in 11 European Union countries from 2010/11 to 2019/20.MethodsCase-based surveillance data from hospitalised patients with known age, sex, outcome, ward, vaccination status, timing of antiviral treatment, and hospitalisation were obtained. A mixed effect logistic regression model using country as random intercept was applied to estimate the adjusted odds ratio (aOR) for in-hospital death in patients treated with NAIs vs not treated.ResultsOf 19,937 patients, 31% received NAIs within 48 hours of hospital admission. Older age (60-79 years aOR 3.0, 95% CI: 2.4-3.8; 80 years 8.3 (6.6-10.5)) and intensive care unit admission (3.8, 95% CI: 3.4-4.2) increased risk of dying, while early hospital admission after symptom onset decreased risk (aOR 0.91, 95% CI: 0.90-0.93). NAI treatment initiation within 48 hours and up to 7 days reduced risk of dying (0-48 hours aOR 0.51, 95% CI: 0.45-0.59; 3-4 days 0.59 (0.51-0.67); 5-7 days 0.64 (0.56-0.74)), in particular in patients 40 years and older (e.g. treatment within 48 hours: 40-59 years aOR 0.43, 95% CI: 0.28-0.66; 60-79 years 0.50 (0.39-0.63); ≥80 years 0.51 (0.42-0.63)).ConclusionNAI treatment given within 48 hours and possibly up to 7 days after symptom onset reduced risk of in-hospital death. NAI treatment should be considered in older patients to prevent severe outcomes.
Assuntos
Influenza Humana , Oseltamivir , Humanos , Idoso , Oseltamivir/uso terapêutico , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Neuraminidase , Mortalidade Hospitalar , Antivirais/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Guanidinas/uso terapêutico , Zanamivir/uso terapêutico , Resultado do TratamentoRESUMO
The extent to which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) break through infection- or vaccine-induced immunity is not well understood. We analyzed 28,578 sequenced SARS-CoV-2 samples from individuals with known immune status obtained through national community testing in the Netherlands from March to August 2021. We found evidence of an increased risk of infection by the Beta (B.1.351), Gamma (P.1), or Delta (B.1.617.2) variants compared with the Alpha (B.1.1.7) variant after vaccination. No clear differences were found between vaccines. However, the effect was larger in the first 14 to 59 days after complete vaccination compared with ≥60 days. In contrast to vaccine-induced immunity, there was no increased risk for reinfection with Beta, Gamma, or Delta variants relative to the Alpha variant in individuals with infection-induced immunity.
Assuntos
COVID-19 , Humanos , SARS-CoV-2 , VacinaçãoRESUMO
The impact of COVID-19 on population health is recognised as being substantial, yet few studies have attempted to quantify to what extent infection causes mild or moderate symptoms only, requires hospital and/or ICU admission, results in prolonged and chronic illness, or leads to premature death. We aimed to quantify the total disease burden of acute COVID-19 in the Netherlands in 2020 using the disability-adjusted life-years (DALY) measure, and to investigate how burden varies between age-groups and occupations. Using standard methods and diverse data sources (mandatory notifications, population-level seroprevalence, hospital and ICU admissions, registered COVID-19 deaths, and the literature), we estimated years of life lost (YLL), years lived with disability, DALY and DALY per 100,000 population due to COVID-19, excluding post-acute sequelae, stratified by 5-year age-group and occupation category. The total disease burden due to acute COVID-19 was 286,100 (95% CI: 281,700-290,500) DALY, and the per-capita burden was 1640 (95% CI: 1620-1670) DALY/100,000, of which 99.4% consisted of YLL. The per-capita burden increased steeply with age, starting from 60 to 64 years, with relatively little burden estimated for persons under 50 years old. SARS-CoV-2 infection and associated premature mortality was responsible for a considerable direct health burden in the Netherlands, despite extensive public health measures. DALY were much higher than for other high-burden infectious diseases, but lower than estimated for coronary heart disease. These findings are valuable for informing public health decision-makers regarding the expected COVID-19 health burden among population subgroups, and the possible gains from targeted preventative interventions.
Assuntos
COVID-19 , Pessoas com Deficiência , Humanos , Pessoa de Meia-Idade , Anos de Vida Ajustados por Qualidade de Vida , Anos de Vida Ajustados por Deficiência , Estudos Soroepidemiológicos , Países Baixos/epidemiologia , SARS-CoV-2 , Efeitos Psicossociais da DoençaRESUMO
Surveillance data shows a geographical overlap between the early coronavirus disease 2019 (COVID-19) pandemic and the past Q fever epidemic (2007-2010) in the Netherlands. We investigated the relationship between past Q fever and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2020/2021, using a retrospective matched cohort study.In January 2021, former Q fever patients received a questionnaire on demographics, SARS-CoV-2 test results and related hospital/intensive care unit (ICU) admissions. SARS-CoV-2 incidence with 95% confidence intervals (CI) in former Q fever patients and standardised incidence ratios (SIR) to compare to the age-standardised SARS-CoV-2 incidence in the general regional population were calculated.Among 890 former Q fever patients (response rate: 68%), 66 had a PCR-confirmed SARS-CoV-2 infection. Of these, nine (14%) were hospitalised and two (3%) were admitted to ICU. From February to June 2020 the SARS-CoV-2 incidence was 1573/100 000 (95% CI 749-2397) in former Q fever patients and 695/100 000 in the general population (SIR 2.26; 95% CI 1.24-3.80). The incidence was not significantly higher from September 2020 to February 2021.We found no sufficient evidence for a difference in SARS-CoV-2 incidence or an increased severity in former Q fever patients vs. the general population during the period with widespread SARS-CoV-2 testing availability (September 2020-February 2021). This indicates that former Q fever patients do not have a higher risk of SARS-CoV-2 infection.
Assuntos
COVID-19 , Febre Q , COVID-19/epidemiologia , Teste para COVID-19 , Estudos de Coortes , Humanos , Incidência , Febre Q/epidemiologia , Estudos Retrospectivos , SARS-CoV-2RESUMO
Early detection of and treatment for chronic Q fever might prevent potentially life-threatening complications. We performed a chronic Q fever screening program in general practitioner practices in the Netherlands 10 years after a large Q fever outbreak. Thirteen general practitioner practices located in outbreak areas selected 3,419 patients who had specific underlying medical conditions, of whom 1,642 (48%) participated. Immunofluorescence assay of serum showed that 289 (18%) of 1,642 participants had a previous Coxiella burnetii infection (IgG II titer >1:64), and 9 patients were suspected of having chronic Q fever (IgG I y titer >1:512). After medical evaluation, 4 of those patients received a chronic Q fever diagnosis. The cost of screening was higher than estimated earlier, but the program was still cost-effective in certain high risk groups. Years after a large Q fever outbreak, targeted screening still detected patients with chronic Q fever and is estimated to be cost-effective.
Assuntos
Coxiella burnetii , Febre Q , Anticorpos Antibacterianos , Coxiella burnetii/genética , Humanos , Imunoglobulina G , Países Baixos/epidemiologia , Febre Q/diagnóstico , Febre Q/epidemiologiaRESUMO
Infections with the Omicron SARS-CoV-2 variant are rapidly increasing worldwide. Among 174,349 SARS-CoV-2-infected individuals (≥ 12 years), we observed an increased risk of S gene target failure, predictive of the Omicron variant, in vaccinated (odds ratio (OR): 3.6; 95% confidence interval (CI): 3.4-3.7) and previously infected individuals (OR: 4.2; 95% CI: 3.8-4.7) compared with infected naïve individuals. This suggests vaccine- or infection-induced immunity against SARS-CoV-2 infections is less effective against the Omicron than the Delta variant.
Assuntos
COVID-19 , SARS-CoV-2 , Vacinas contra COVID-19 , Humanos , Países BaixosRESUMO
BACKGROUND: Indoor environments are considered one of the main settings for transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Households in particular represent a close-contact environment with high probability of transmission between persons of different ages and roles in society. METHODS: Households with a laboratory-confirmed SARS-CoV-2 positive case in the Netherlands (March-May 2020) were included. At least 3 home visits were performed during 4-6 weeks of follow-up, collecting naso- and oropharyngeal swabs, oral fluid, feces and blood samples from all household members for molecular and serological analyses. Symptoms were recorded from 2 weeks before the first visit through to the final visit. Infection secondary attack rates (SAR) were estimated with logistic regression. A transmission model was used to assess household transmission routes. RESULTS: A total of 55 households with 187 household contacts were included. In 17 households no transmission took place; in 11 households all persons were infected. Estimated infection SARs were high, ranging from 35% (95% confidence interval [CI], 24%-46%) in children to 51% (95% CI, 39%-63%) in adults. Estimated transmission rates in the household were high, with reduced susceptibility of children compared with adolescents and adults (0.67; 95% CI, .40-1.1). CONCLUSION: Estimated infection SARs were higher than reported in earlier household studies, presumably owing to our dense sampling protocol. Children were shown to be less susceptible than adults, but the estimated infection SAR in children was still high. Our results reinforce the role of households as one of the main multipliers of SARS-CoV-2 infection in the population.
Assuntos
COVID-19 , SARS-CoV-2 , Adolescente , Adulto , Criança , Suscetibilidade a Doenças , Características da Família , Humanos , IncidênciaRESUMO
BACKGROUND: In the Netherlands, an increased risk of community-acquired pneumonia (CAP) has been reported for adults living near goat and poultry farms. Previous results of respiratory microbiome studies in hospitalized CAP patients near poultry farms suggested a higher relative abundance of Streptococcus pneumoniae. This retrospective study, using routine laboratory data from hospitalized CAP patients, aims to explore possible aetiologic micro-organisms of CAP in relation to livestock exposure. METHODS: Patient characteristics and PCR and urinary antigen test results were retrieved retrospectively from electronic medical records of CAP patients admitted to the Jeroen Bosch Hospital or Gelre Hospital in the Netherlands during 2016-2017. Distances between the patients' home address and the nearest poultry and goat farm were calculated. Differences in laboratory test results between CAP patients with and without goat or poultry farms within 2 km of their home address were analyzed using Fisher's exact test. RESULTS: In total, 2230 CAP episodes with diagnostic results were included. In only 25% of the CAP episodes, a micro-organism was detected. A positive urinary antigen test for S. pneumoniae was found more often in patients living within two kilometers of goat (15.2% vs. 11.3%) and poultry farms (14.4% vs. 11.3%), however these differences were not statistically significant (p = 0.1047 and p = 0.1376). CONCLUSION: Our retrospective analysis did not show statistically significant differences in the identified micro-organisms in hospitalized CAP patients related to livestock farming. The study was hampered by limited statistical power and limited laboratory results. Therefore, the potential increased CAP risk around goat and poultry farms will be further explored in a prospective study among CAP patients in primary care.
RESUMO
Since the 2009 influenza pandemic, the Netherlands has used a weekly death monitoring system to estimate deaths in excess of expectations. We present estimates of excess deaths during the ongoing coronavirus disease (COVID-19) epidemic and 10 previous influenza epidemics. Excess deaths per influenza epidemic averaged 4,000. The estimated 9,554 excess deaths (41% in excess) during the COVID-19 epidemic weeks 12-19 of 2020 appeared comparable to the 9,373 excess deaths (18%) during the severe influenza epidemic of 2017-18. However, these deaths occurred in a shorter time, had a higher peak, and were mitigated by nonpharmaceutical control measures. Excess deaths were 1.8-fold higher than reported laboratory-confirmed COVID-19 deaths (5,449). Based on excess deaths and preliminary results from seroepidemiologic studies, we estimated the infection-fatality rate to be 1%. Monitoring of excess deaths is crucial for timely estimates of disease burden for influenza and COVID-19. Our data complement laboratory-confirmed COVID-19 death reports and enable comparisons between epidemics.
Assuntos
COVID-19/mortalidade , Epidemias/estatística & dados numéricos , Influenza Humana/mortalidade , Humanos , Mortalidade/tendências , Países Baixos/epidemiologia , Orthomyxoviridae , SARS-CoV-2 , Estações do AnoRESUMO
Our study aim was to determine how a new clinical pathway, including PCR-based influenza point-of-care test (POCT), influences the hospitalisation costs of patients suspected of influenza presenting at the emergency department of a Dutch hospital during two consecutive influenza epidemics (2016-2017 and 2017-2018). Compared to mean costs per patient of 3661 in 2016-2017, the implementation of this new clinical pathway with influenza POCT in 2017 was associated with mean costs per influenza-positive patient of 2495 in 2017-2018 (P = .3). Our study suggests favourable economic results regarding a new clinical pathway with influenza POCT, reflecting a more efficient care of patients suspected of influenza presenting at the emergency department.
Assuntos
Epidemias , Influenza Humana , Procedimentos Clínicos , Serviço Hospitalar de Emergência , Hospitais , Humanos , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Sistemas Automatizados de Assistência Junto ao Leito , Testes ImediatosRESUMO
High coronavirus incidence has prompted the Netherlands to implement a second lockdown. To elucidate the epidemic's development preceding this second wave, we analysed weekly test positivity in public test locations by population subgroup between 1 June and 17 October 2020. Hospitality and public transport workers, driving instructors, hairdressers and aestheticians had higher test positivity compared with a reference group of individuals without a close-contact occupation. Workers in childcare, education and healthcare showed lower test positivity.
Assuntos
Distribuição por Idade , Teste para COVID-19 , COVID-19/epidemiologia , Controle de Doenças Transmissíveis/métodos , Ocupações/estatística & dados numéricos , Pandemias , SARS-CoV-2/isolamento & purificação , Adolescente , Adulto , Idoso , COVID-19/diagnóstico , COVID-19/prevenção & controle , Criança , Pré-Escolar , Busca de Comunicante , Feminino , Acessibilidade aos Serviços de Saúde , Hospitalização/estatística & dados numéricos , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Exposição Ocupacional , Distanciamento Físico , Quarentena , Risco , Adulto JovemRESUMO
To rapidly assess possible community transmission in Noord-Brabant, the Netherlands, healthcare workers (HCW) with mild respiratory complaints and without epidemiological link (contact with confirmed case or visited areas with active circulation) were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Within 2 days, 1,097 HCW in nine hospitals were tested; 45 (4.1%) were positive. Of six hospitals with positive HCW, two accounted for 38 positive HCW. The results informed local and national risk management.
Assuntos
Infecções Comunitárias Adquiridas/transmissão , Infecções por Coronavirus/transmissão , Pessoal de Saúde , Pneumonia Viral/transmissão , Síndrome Respiratória Aguda Grave/epidemiologia , Betacoronavirus , COVID-19 , Infecções Comunitárias Adquiridas/epidemiologia , Coronavirus/genética , Coronavirus/isolamento & purificação , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Surtos de Doenças , Humanos , Países Baixos/epidemiologia , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/diagnóstico , Síndrome Respiratória Aguda Grave/transmissãoRESUMO
BACKGROUND: The Netherlands, like most European countries, has a robust influenza surveillance system in primary care. However, there is a lack of real-time nationally representative data on hospital admissions for complications of influenza. Anecdotal information about hospital capacity problems during influenza epidemics can, therefore, not be substantiated. OBJECTIVE: The aim of this study was to assess whether media reports could provide relevant information for estimating the impact of influenza on hospital capacity, in the absence of hospital surveillance data. METHODS: Dutch news articles on influenza in hospitals during the influenza season (week 40 of 2017 until week 20 of 2018) were searched in a Web-based media monitoring program (Coosto). Trends in the number of weekly articles were compared with trends in 5 different influenza surveillance systems. A content analysis was performed on a selection of news articles, and information on the hospital, department, problem, and preventive or response measures was collected. RESULTS: The trend in weekly news articles correlated significantly with the trends in all 5 surveillance systems, including severe acute respiratory infections (SARI) surveillance. However, the peak in all 5 surveillance systems preceded the peak in news articles. Content analysis showed hospitals (N=69) had major capacity problems (46/69, 67%), resulting in admission stops (9/46, 20%), postponement of nonurgent surgical procedures (29/46, 63%), or both (8/46, 17%). Only few hospitals reported the use of point-of-care testing (5/69, 7%) or a separate influenza ward (3/69, 4%) to accelerate clinical management, but most resorted to ad hoc crisis management (34/69, 49%). CONCLUSIONS: Media reports showed that the 2017/2018 influenza epidemic caused serious problems in hospitals throughout the country. However, because of the time lag in media reporting, it is not a suitable alternative for near real-time SARI surveillance. A robust SARI surveillance program is important to inform decision making.
Assuntos
Hospitalização/estatística & dados numéricos , Influenza Humana/terapia , Meios de Comunicação de Massa/estatística & dados numéricos , Vigilância em Saúde Pública/métodos , Humanos , Influenza Humana/epidemiologia , Países Baixos/epidemiologia , Pesquisa QualitativaRESUMO
OBJECTIVE: Influenza virus infections cause a high disease and economic burden during seasonal epidemics. However, there is still a need for reliable disease burden estimates to provide a more detailed picture of the impact of influenza. Therefore, the objectives of this study is to estimate the incidence of hospitalisation for influenza virus infection and associated hospitalisation costs in adult patients in the Netherlands during two consecutive influenza seasons. METHODS: We conducted a retrospective study in adult patients with a laboratory confirmed influenza virus infection in three Dutch hospitals during respiratory seasons 2014-2015 and 2015-2016. Incidence was calculated as the weekly number of hospitalised influenza patients divided by the total population in the catchment populations of the three hospitals. Arithmetic mean hospitalisation costs per patient were estimated and included costs for emergency department consultation, diagnostics, general ward and/or intensive care unit admission, isolation, antibiotic and/or antiviral treatment. These hospitalisation costs were extrapolated to national level and expressed in 2017 euros. RESULTS: The study population consisted of 380 hospitalised adult influenza patients. The seasonal cumulative incidence was 3.5 cases per 10,000 persons in respiratory season 2014-2015, compared to 1.8 cases per 10,000 persons in 2015-2016. The arithmetic mean hospitalisation cost per influenza patient was 6128 (95% CI 4934-7737) per patient in 2014-2015 and 8280 (95% CI 6254-10,665) in 2015-2016, potentially reaching total hospitalisation costs of 28 million in 2014-2015 and 20 million in 2015-2016. CONCLUSIONS: Influenza virus infections lead to 1.8-3.5 hospitalised patients per 10,000 persons, with mean hospitalisation costs of 6100-8300 per adult patient, resulting in 20-28 million euros annually in The Netherlands. The highest arithmetic mean hospitalisation costs per patient were found in the 45-64 year age group. These influenza burden estimates could be used for future influenza cost-effectiveness and impact studies.
Assuntos
Custos Hospitalares/estatística & dados numéricos , Hospitalização/economia , Influenza Humana/economia , Influenza Humana/epidemiologia , Adolescente , Adulto , Idoso , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Incidência , Vírus da Influenza A/isolamento & purificação , Influenza Humana/enzimologia , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Estudos Retrospectivos , Adulto JovemRESUMO
BACKGROUND: Morbidity, severity, and mortality associated with annual influenza epidemics are of public health concern. We analyzed surveillance data on hospitalized laboratory-confirmed influenza cases admitted to intensive care units to identify common determinants for fatal outcome and inform and target public health prevention strategies, including risk communication. METHODS: We performed a descriptive analysis and used Poisson regression models with robust variance to estimate the association of age, sex, virus (sub)type, and underlying medical condition with fatal outcome using European Union data from 2009 to 2017. RESULTS: Of 13 368 cases included in the basic dataset, 2806 (21%) were fatal. Age ≥40 years and infection with influenza A virus were associated with fatal outcome. Of 5886 cases with known underlying medical conditions and virus A subtype included in a more detailed analysis, 1349 (23%) were fatal. Influenza virus A(H1N1)pdm09 or A(H3N2) infection, age ≥60 years, cancer, human immunodeficiency virus infection and/or other immune deficiency, and heart, kidney, and liver disease were associated with fatal outcome; the risk of death was lower for patients with chronic lung disease and for pregnant women. CONCLUSIONS: This study re-emphasises the importance of preventing influenza in the elderly and tailoring strategies to risk groups with underlying medical conditions.
RESUMO
BACKGROUND: Prior to the 2007-2010 Q fever epidemic in the Netherlands, the seroprevalence of antibodies against Coxiella burnetii in the general population was 1.5%, which is low compared to other countries. We aimed to determine the seroprevalence after the Q fever epidemic among people living in the affected area, compare the seroprevalence with the incidence of Q fever notifications during the 2007-2010 Q fever epidemic, and to identify farm exposures associated with having antibodies against C. burnetii. METHODS: During the period March 2014-February 2015, residents aged 18-70 years from two provinces were invited by general practitioners to complete a questionnaire on their symptoms and personal characteristics and to submit a blood sample. We used the mandatory provincial database of livestock licences to calculate distance to farms/farm animals for each participant. To compare ELISA-positive participants for C. burnetii antibodies with those who were negative, we calculated prevalence ratios (PR) using binominal regression. We compared the C. burnetii seroprevalence in the period March 2014-February 2015 with the incidence of Q fever notifications during the 2007-2010 Q fever epidemic at municipal level by calculating the Spearman correlation coefficient. RESULTS: Of the 2296 participants (response rate: 34%), 6.1% (n = 139, 95% CI 5.1-7.1%) had C. burnetii antibodies (range in municipalities: 1.7-14.1%). C. burnetii seroprevalence was higher in individuals living within 1000 m of goat farms (PR 3.0; 95% CI 1.4-6.4) or within 1000 m of > 50 goats (PR 1.9; 95% CI 1.2-3.0). Seroprevalence increased with decreasing distance to the closest goat farm that was infected during the epidemic years (< 500 m, PR 9.5, 95% CI 2.8-32; 500-1000 m, PR 4.5, 95% CI 2.6-7.7; 1000-1500 m, PR 2.2, 95% CI 1.1-4.3, 1500-2000 m, PR 1.2, 95% CI 0.6-2.5; > 2000 reference group). There was no significant correlation between C. burnetii seroprevalence and Q fever incidence during the 2007-2010 epidemic (r s = 0.42, p = 0.156). CONCLUSIONS: Results showed a remarkable spatial variation in C. burnetii seroprevalence in a relatively small livestock dense area. It confirms previous evidence that the Q fever epidemic was primarily the result of airborne C. burnetii transmission from Q fever affected goat farms.
Assuntos
Coxiella burnetii , Reservatórios de Doenças/estatística & dados numéricos , Febre Q/epidemiologia , Adulto , Idoso , Animais , Anticorpos Antibacterianos/sangue , Coxiella burnetii/imunologia , Coxiella burnetii/patogenicidade , Estudos Transversais , Indústria de Laticínios/estatística & dados numéricos , Epidemias , Cabras/microbiologia , Humanos , Incidência , Gado/microbiologia , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Prevalência , Febre Q/imunologia , Estudos SoroepidemiológicosRESUMO
Previous research conducted in 2009 found a significant positive association between pneumonia in humans and living close to goat and poultry farms. However, as this result might have been affected by a large goat-related Q fever epidemic, the aim of the current study was to re-evaluate this association, now that the Q-fever epidemic had ended. In 2014/15, 2,494 adults (aged 20-72 years) living in a livestock-dense area in the Netherlands participated in a medical examination and completed a questionnaire on respiratory health, lifestyle and other items. We retrieved additional information for 2,426/2,494 (97%) participants from electronic medical records (EMR) from general practitioners. The outcome was self-reported, physician-diagnosed pneumonia or pneumonia recorded in the EMR in the previous three years. Livestock license data was used to determine exposure to livestock. We quantified associations between livestock exposures and pneumonia using odds ratios adjusted for participant characteristics and comorbidities (aOR). The three-year cumulative frequency of pneumonia was 186/2,426 (7.7%). Residents within 2,000m of a farm with at least 50 goats had an increased risk of pneumonia, which increased the closer they lived to the farm (2,000m aOR 1.9, 95% CI 1.4-2.6; 500m aOR 4.4, 95% CI 2.0-9.8). We found no significant associations between exposure to other farm animals and pneumonia. However, when conducting sensitivity analyses using pneumonia outcome based on EMR only, we found a weak but statistically significant association with presence of a poultry farm within 1,000m (aOR: 1.7, 95% CI 1.1-2.7). Living close to goat and poultry farms still constitute risk factors for pneumonia. Individuals with pneumonia were not more often seropositive for Coxiella burnetii, indicating that results are not explained by Q fever. We strongly recommend identification of pneumonia causes by the use of molecular diagnostics and investigating the role of non-infectious agents such as particulate matter or endotoxins.
Assuntos
Gado/microbiologia , Pneumonia/epidemiologia , Adulto , Idoso , Criação de Animais Domésticos , Animais , Animais Domésticos , Coxiella burnetii/patogenicidade , Registros Eletrônicos de Saúde , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Febre Q/epidemiologia , Fatores de Risco , Adulto JovemRESUMO
BACKGROUND: Recent serological studies indicate that hepatitis E virus (HEV) is endemic in industrialised countries. The increasing trend in the number of autochthonous cases of HEV genotype 3 in Western European countries, stresses the importance to get insight in the exact routes of exposure. Pigs are the main animal reservoir, and zoonotic food-borne transmission of HEV is proven. However, infected pigs can excrete large amounts of virus via their faeces enabling environmental transmission of HEV to humans. This might pose a risk for of neighbouring residents of livestock farming. METHODS: Within a large study on the health of people living in the vicinity of livestock farming we performed a cross-sectional population-based serological survey among 2,494 non-farming adults from the general population in a livestock-dense area in the south of the Netherlands. Participants completed risk factor questionnaires and blood samples of 2,422 subjects (median age 58 years, range 20-72) were tested for anti-HEV IgG using an enzyme immune assay (Wantai). The aim of this study was to determine the HEV seroprevalence and to assess whether seropositivity in adults was associated with living in the vicinity of pig farms. RESULTS: The average seroprevalence of HEV was 28.7% (95% CI: 26.9-30.5). Determinants associated with an increased risk for HEV seropositivity were male gender and low level of education. There was a clear trend of increasing prevalence with increasing age (Chi-square test for linear trend, X2 = 83.1; p < 0.001). A high number of pigs within 1,000 m of the residential address was not a risk factor for seropositivity. CONCLUSIONS: This study confirmed the high HEV seroprevalence (29%) in the general population of the Netherlands, but presence of antibodies was not associated with residential proximity to pig farms. The prevalence increased with age from 10% in adolescents to 33% among those aged 50 and above, supporting the assumption of a cumulative lifetime exposure to HEV in the Netherlands as well as a higher infection pressure in the past. Our findings cannot refute the assumption that transmission is primarily food-borne.